初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试课时作业
展开这是一份初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试课时作业,共19页。试卷主要包含了若,则下列不等式不一定成立的是,如图,数轴上表示的解集是等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组章节训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、关于的两个代数式与的值的符号相反,则的取值范围是( )
A. B. C. D.或
2、有两个正数a,b,且a<b,把大于等于a且小于等于b的所有数记作[a,b].例如,大于等于1且小于等于4的所有数记作[1,4].若整数m在[5,15]内,整数n在[﹣30,﹣20]内,那么的一切值中属于整数的个数为( )
A.6个 B.5个 C.4个 D.3个
3、不等式的整数解是1,2,3,4.则实数a的取值范围是( )
A. B. C. D.
4、若,则下列不等式不一定成立的是( )
A. B. C. D.
5、若a>b,则下列不等式一定成立的是( )
A.﹣2a<﹣2b B.am<bm C.a﹣3<b﹣3 D.+1<+1
6、若不等式﹣3x<1,两边同时除以﹣3,得( )
A.x>﹣ B.x<﹣ C.x> D.x<
7、已知关于x的不等式组的解集中任意一个x的值均不在﹣1≤x≤3的范围内,则a的取值范围是( )
A.﹣5≤a≤6 B.a≥6或a≤﹣5 C.﹣5<a<6 D.a>6或a<﹣5
8、如图,数轴上表示的解集是( )
A.﹣3<x≤2 B.﹣3≤x<2 C.x>﹣3 D.x≤2
9、在数轴上表示不等式﹣1<x2,其中正确的是( )
A. B.
C. D.
10、解集如图所示的不等式组为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知关于x的不等式组无解,则a的取值范围是_____________.
2、已知关于x的不等式组只有两个整数解,则实数m的取值范围是 __________.
3、若关于的不等式的解集如图所示,则的值为_____.
4、说出下列不等式的变形是根据不等式的哪一条性质:
(1)由x>-3,得x>-6;___________;
(2)由3+x≤5,得x≤2;______________;
(3)由-2x<6,得x>-3;____________;
(4)由3x≥2x-4,得x≥-4._____________.
5、 “x的2倍减去y的差是非正数”用不等式表示为_______.
三、解答题(5小题,每小题10分,共计50分)
1、解不等式组,并把解集在数轴上表示出来.
2、解下列不等式(组):
(1),并把它的解集在数轴上表示出来.
(2)解一元一次不等式组,并写出它的整数解.
3、(1)解不等式x+2<6;
(2)解不等式+1≥,并把它的解集在数轴上表示出来.
4、(1)解不等式:3x﹣2≤5x,并把解集在数轴上表示出来.
(2)解不等式组,并写出它的最大整数解.
5、解不等式组,并把解集表示在数轴上.
---------参考答案-----------
一、单选题
1、C
【解析】
【分析】
代数式x-3与x+5的符号相反,分两种情况,解不等式组即可.
【详解】
解:根据题意得,
或,
解得:,
故选:C.
【点睛】
本题考查了解一元一次不等式组,是基础知识要熟练掌握.
2、B
【解析】
【分析】
根据已知条件得出5≤m≤15,−30≤n≤−20,再得出的范围,即可得出整数的个数.
【详解】
解:∵m在[5,15]内,n在[−30,−20]内,
∴5≤m≤15,−30≤n≤−20,
∴−≤≤,即−6≤≤−,
∴的一切值中属于整数的有−2,−3,−4,−5,−6,共5个;
故选:B.
【点睛】
此题考查了不等式组的应用,求出5≤m≤15和−30≤n≤−20是解题的关键.
3、A
【解析】
【分析】
先确定 再分析不符合题意,确定 再解不等式,结合不等式的整数解可得:,从而可得答案.
【详解】
解:
显然:
当时,不等式的解集为:,
不等式没有正整数解,不符合题意,
当时,不等式的解集为:
不等式的整数解是1,2,3,4,
由①得:
由②得:
所以不等式组的解集为:
故选A
【点睛】
本题考查的是根据不等式的整数解确定参数的取值范围,掌握“解不等式时,不等式的左右两边都乘以或除以同一个负数时,不等号的方向改变”是解题的关键.
4、D
【解析】
【分析】
根据不等式的性质判断即可.
【详解】
解:A、两边都加2,不等号的方向不变,故A不符合题意;
B、两边都乘以2,不等号的方向不变,故B不符合题意;
C、两边都除以2,不等号的方向不变,故C不符合题意;
D、当b<0<a,且时,a2<b2,故D符合题意;
故选:D.
【点睛】
本题主要考查了不等式的基本性质.(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
5、A
【解析】
【分析】
由题意直接依据不等式的基本性质对各个选项进行分析判断即可.
【详解】
解:A.∵a>b,
∴﹣2a<﹣2b,故本选项符合题意;
B.a>b,当m>0时,am>bm,故本选项不符合题意;
C.∵a>b,
∴a﹣3>b﹣3,故本选项不符合题意;
D.∵a>b,
∴,
∴,故本选项不符合题意;
故选:A.
【点睛】
本题考查不等式的基本性质,注意掌握不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.
6、A
【解析】
【分析】
根据题意直接利用不等式的性质进行计算即可得出答案.
【详解】
解:不等式﹣3x<1,两边同时除以﹣3,得x>﹣.
故选:A.
【点睛】
本题主要考查不等式的基本性质.解不等式依据不等式的性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.
7、B
【解析】
【分析】
根据解不等式组,可得不等式组的解集,根据不等式组的解集是与﹣1≤x≤3的关系,可得答案.
【详解】
解:不等式组,得a﹣3<x<a+4,
由不等式组的解集中任意一个x的值均不在﹣1≤x≤3的范围内,得
a+4≤﹣1或a﹣3≥3,
解得a≤﹣5或a≥6,
故选:B.
【点睛】
本题考查了不等式的解集,利用解集中任意一个x的值均不在﹣1≤x≤3的范围内得出不等式是解题关键.
8、A
【解析】
【分析】
根据求不等式组的解集的表示方法,可得答案.
【详解】
解:由图可得,x>﹣3且x≤2
∴在数轴上表示的解集是﹣3<x≤2,
故选A.
【点睛】
本题考查了在数轴上表示不等式组的解集,不等式组的解集在数轴上的表示方法是:大大取大,小小取小,大小小大中间找,小小大大无解.
9、A
【解析】
【分析】
不等式﹣1<x≤2在数轴上表示不等式x>﹣1与x≤2两个不等式的公共部分,据此求解即可.
【详解】
解:“>”空心圆圈向右画折线,“≤”实心圆点向左画折线.
故在数轴上表示不等式﹣1<x⩽2如下:
故选A.
【点睛】
本题考查了在数轴上表示不等式的解集,不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
10、A
【解析】
【分析】
根据图象可得数轴所表示的不等式组的解集,然后依据不等式组解集的确定方法“同大取大,同小取小,小大大小中间找,大大小小无处找”,依次确定各选项的解集进行对比即可.
【详解】
解:根据图象可得,数轴所表示的不等式组的解集为:
,
A选项解集为:,符合题意;
B选项解集为:,不符合题意;
C选项解集为:,不符合题意;
D选项解集为:,不符合题意;
故选:A.
【点睛】
题目主要考查不等式组的解集在数轴上的表示及解集的确定,理解不等式组解集的确定方法是解题关键.
二、填空题
1、
【解析】
【分析】
先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a的取值范围即可.
【详解】
解:
由①得:
由②得:
不等式组无解
故答案为.
【点睛】
本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找.
2、
【解析】
【分析】
分和两种情况,列出不等式组,根据不等式组有两个整数解求解可得.
【详解】
解:当时,,
,
;
当时,,
,
不等式的解为,
不等式组只有两个整数解,
两个整数解为和,
,
故答案为:.
【点睛】
本题主要考查一元一次不等式组的整数解,解题的关键是根据绝对值性质分类讨论及由不等式组的整数解得出的值.
3、3
【解析】
【分析】
由数轴可以得到不等式的解集是x>﹣2,根据已知的不等式可以用关于m的式子表示出不等式的解集.就可以得到一个关于m的方程,可以解方程求得.
【详解】
解:解不等式x+m>1得
由数轴可得,x>﹣2,
则
解得,m=3.
故答案为:3.
【点睛】
本题主要考查了解一元一次不等式,数轴上表示不等式的解集,解一元一次方程,注意数轴上的空心表示不包括﹣2,即x>﹣2.并且本题是不等式与方程相结合的综合题.
4、 不等式的基本性质2 不等式的基本性质1 不等式的基本性质3 不等式的基本性质1
【解析】
【分析】
根据不等式的基本性质依次分析各小题即可得到结果.
【详解】
(1)由x>-3,根据不等式的基本性质2,两边同时乘以2得x>-6;
(2)由3+x≤5,根据不等式的基本性质1,两边同时减去3得x≤2;
(3)由-2x<6,根据不等式的基本性质3,两边同时除以-2得x>-3;
(4)由3x≥2x-4,根据不等式的基本性质1,两边同时减去2x得x≥-4.
故答案为:不等式的基本性质2;不等式的基本性质1;不等式的基本性质3,不等式的基本性质1.
【点睛】
本题考查了不等式的性质.不等式两边加上(或减去)同一个数,不等号方向不变;不等式两边乘以(或除以)同一个正数,不等号方向不变;不等式两边乘以(或除以)同一个负数,不等号方向改变.
5、2x−y≤0
【解析】
【分析】
直接利用“x的2倍”即2x,再减y,结果是非正数,即小于等于零,即可得出不等式.
【详解】
解:由题意可得:2x−y≤0.
故答案为:2x−y≤0.
【点睛】
此题主要考查了由实际问题抽象出一元一次不等式,正确得出不等关系是解题关键.
三、解答题
1、﹣2<x≤1,图见解析
【解析】
【分析】
分别解不等式组中的两个不等式,再取两个不等式的解集的公共部分,再在数轴上表示不等式组是解集即可.
【详解】
解:,
∵解不等式①得:x≤1,
解不等式②得:x>﹣2,
∴不等式组的解集为:﹣2<x≤1.
在数轴上表示不等式组的解集为:
【点睛】
本题考查的是一元一次不等式组的解法,在数轴上表示不等式组的解集,掌握解不等式组的方法是解本题的关键.
2、(1),数轴见解析;(2),整数解是-3,-2,-1,0
【解析】
【分析】
(1)依次去括号、移项、合并同类项、系数化为1即可得;
(2)先求出两个不等式的解集,再求其公共解.
【详解】
解:(1)去括号,得:2x-11<4x-12+3,
移项,得:2x-4x<-12+3+11,
合并同类项,得:-2x<2,
系数化为1,得:x>-1,
将不等式的解集表示在数轴上如下:
(2),
解不等式①,得x≥-,
解不等式②,得x<,
∴原不等式组的解为-≤x<,
则不等式组的整数解是-3,-2,-1,0.
【点睛】
本题考查了解一元一次不等式、不等式组的整数解和解一元一次不等式组,能求出不等式的解集是解此题的关键.
3、(1);(2),数轴见解析
【解析】
【分析】
(1)直接移项即可解得不等式的解集;
(2)先去分母再去括号,进而求得不等式的解集,并把它的解集在数轴上表示出来
【详解】
(1)x+2<6;
(2)+1≥,
解得
在数轴上表示,如图,
【点睛】
本题考查了解一元一次不等式,在数轴上表示不等式的解集,准确的计算和数形结合是解题的关键.
4、(1)x≥﹣1,数轴见解析;(2),2
【解析】
【分析】
(1)根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得;
(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而即可求解.
【详解】
解:(1)移项,得:3x﹣5x≤2,
合并同类项,得:﹣2x≤2,
系数化为1,得:x≥﹣1,
将不等式的解集表示在数轴上如下:
(2)解不等式2(x﹣2)≤3﹣x,得:x≤,
解不等式,得:x>﹣3,
则不等式组的解集为﹣3<x≤,
∴其最大整数解为2.
【点睛】
本题主要考查解一元一次不等式以及不等式组,熟练掌握解不等式(组)的基本步骤是解题的关键.
5、,图见解析
【解析】
【分析】
分别解出两个不等式的解集,并表示在数轴上,再找到公共解集即可解题.
【详解】
解:
由①得
由②得
把不等式组的解集表示在数轴上,如图,
∴原不等式组的解为
【点睛】
本题考查解一元一次不等式组、在数轴上表示不等式组的解集,熟知:同大取大,同小取小,大小小大中间找,大大小小找不到的原则是解题的关键.
相关试卷
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习题,共24页。
这是一份数学第九章 数据的收集与表示综合与测试习题,共19页。试卷主要包含了下列调查中,最适合抽样调查的是,下列做法正确的是,一组数据x等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试巩固练习,共18页。试卷主要包含了下列说法中正确的是,某教室9天的最高室温统计如下,为了解学生参加体育锻炼的情况等内容,欢迎下载使用。