初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试课后测评
展开这是一份初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试课后测评,共16页。试卷主要包含了不等式组的最小整数解是,若,则下列不等式不一定成立的是,下列不等式一定成立的是,若成立,则下列不等式不成立的是等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列式子:①5<7;②2x>3;③y≠0;④x≥5;⑤2a+l;⑥;⑦x=1.其中是不等式的有( )
A.3个 B.4个 C.5个 D.6个
2、不等式组的解是x>a,则a的取值范围是( )
A.a<3 B.a=3 C.a>3 D.a≥3
3、解集如图所示的不等式组为( )
A. B. C. D.
4、在数轴上点A,B对应的数分别是a,b,点A在表示﹣3和﹣2的两点之间(包括这两点)移动,点B在表示﹣1和0的两点(包括这两点)之间移动,则以下四个代数式的值可能比2021大的是( )
A. B. C. D.
5、能说明“若xy,则axay”是假命题的a的值是( )
A.3 B.2 C.1 D.
6、不等式组的最小整数解是( )
A.5 B.0 C. D.
7、若,则下列不等式不一定成立的是( )
A. B. C. D.
8、下列不等式一定成立的是( )
A. B. C. D.
9、若成立,则下列不等式不成立的是( )
A. B. C. D.
10、在数轴上表示不等式的解集正确的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知,则_________.(填“>”“=”或“<”)
2、若m与3的和是正数,则可列出不等式:___.
3、不等式组的解集是______.
4、不等式组的整数解共有4个,则a的取值范围是 __________.
5、若关于x的不等式组有解,则a的取值范围是______.
三、解答题(5小题,每小题10分,共计50分)
1、 “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.
2、某商店对A型号笔记本电脑举行促销活动,有两种优惠方案可供选择.
方案一:每台按售价的九折销售;
方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.
已知A型号笔记本电脑的原售价是5000元/台,某公司一次性从该商店购买A型号笔记本电脑x台.
(1)若方案二比方案一更便宜,根据题意列出关于x的不等式.
(2)若公司买12台笔记本,你会选择哪个方案?请说明理由.
3、解下列不等式
(1)2x>3﹣x;
(2)2(x+4)>3(x﹣1).
4、解不等式组求它的整数解:
5、(1)若a<0,则a 2a;(用“>”“<”“=”填空)
(2)若a<c<b<0,则abc 0;(用“>”“<”“=”填空)
(3)若a<c<0<b,化简:4(c﹣a)﹣2(2c﹣b),并判断化简结果的正负.
---------参考答案-----------
一、单选题
1、C
【解析】
【分析】
主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.
【详解】
解:①②③④⑥均为不等式共5个.
故选:C
【点睛】
本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.
2、D
【解析】
【分析】
根据不等式组的解集为x>a,结合每个不等式的解集,即可得出a的取值范围.
【详解】
解:∵不等式组的解是x>a,
∴,
故选:D.
【点睛】
本题考查了求不等式组的解集的方法,熟记口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解本题的关键.
3、A
【解析】
【分析】
根据图象可得数轴所表示的不等式组的解集,然后依据不等式组解集的确定方法“同大取大,同小取小,小大大小中间找,大大小小无处找”,依次确定各选项的解集进行对比即可.
【详解】
解:根据图象可得,数轴所表示的不等式组的解集为:
,
A选项解集为:,符合题意;
B选项解集为:,不符合题意;
C选项解集为:,不符合题意;
D选项解集为:,不符合题意;
故选:A.
【点睛】
题目主要考查不等式组的解集在数轴上的表示及解集的确定,理解不等式组解集的确定方法是解题关键.
4、C
【解析】
【分析】
根据已知条件得出,,,求出,,,,再分别求出每个式子的范围,根据式子的范围即可得出答案.
【详解】
,,
,,,,,
,故A选项不符合题意;
,故B选项不符合题意;
可能比2021大,故C选项符合题意;
,故D选项不符合题意;
故选:C.
【点睛】
本题考查数轴、倒数、有理数的混合运算,求出每个式子的范围是解题的关键.
5、D
【解析】
【分析】
根据不等式的性质,等式两边同时乘以或者除以一个负数,不等式的符号改变,判断即可.
【详解】
解:“若xy,则axay”是假命题,
则,
故选:D.
【点睛】
本题考查了不等式的基本性质,熟知不等式的三个基本性质是解本题的关键.
6、C
【解析】
【分析】
分别求出各不等式的解集,再求出其公共解集,然后求出最小整数解即可.
【详解】
解:解不等式,得:,
解不等式,得:,
故不等式组的解集为:,
则该不等式组的最小整数解为:.
故选:C.
【点睛】
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
7、D
【解析】
【分析】
根据不等式的性质判断即可.
【详解】
解:A、两边都加2,不等号的方向不变,故A不符合题意;
B、两边都乘以2,不等号的方向不变,故B不符合题意;
C、两边都除以2,不等号的方向不变,故C不符合题意;
D、当b<0<a,且时,a2<b2,故D符合题意;
故选:D.
【点睛】
本题主要考查了不等式的基本性质.(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
8、B
【解析】
【分析】
根据不等式的性质依次判断即可.
【详解】
解:A.当y≤0时不成立,故该选项不符合题意;
B.成立,该选项符合题意;
C. 当x≤0时不成立,故该选项不符合题意;
D. 当m≤0时不成立,故该选项不符合题意;
故选:B.
【点睛】
本题主要考查不等式的性质,熟练掌握不等式的性质是解决本题的关键.
9、D
【解析】
【分析】
根据不等式的性质逐项判断即可.
【详解】
解:A、给两边都减去1,不等号的方向不变,故本选项正确,不符合题意;
B、给两边都加上x,不等号的方向不变,故本选项正确,不符合题意;
C、给两边都除以2,不等号的方向不变,故本选项正确,不符合题意;
D、给两边都乘以﹣3,不等号的方向要改变,故本选项不正确,符合题意,
故选:D.
【点睛】
本题考查不等式的性质,熟练掌握不等式的性质,注意不等号的方向是解答的关键.
10、A
【解析】
【分析】
根据在数轴上表示不等式的解集的方法进行判断即可.
【详解】
在数轴上表示不等式的解集如下:
故选:.
【点睛】
本题考查不等式在数轴上的表示,掌握不等式在数轴上的画法是解题的关键.
二、填空题
1、>
【解析】
【分析】
根据不等式性质即可得到答案.
【详解】
解:∵ ,
∴,
∴
故答案为:>.
【点睛】
本题考查不等式性质的应用,解题的关键是掌握不等式性质.
2、
【解析】
【分析】
根据题意列出不等式即可
【详解】
若m与3的和是正数,则可列出不等式
故答案为:
【点睛】
本题考查了一元一次不等式的应用,理解题意是解题的关键.
3、
【解析】
【分析】
根据一元一次不等式组的解法可直接进行求解.
【详解】
解:,
由①可得:,
由②可得:,
∴原不等式组的解集为;
故答案为.
【点睛】
本题主要考查一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解题的关键.
4、
【解析】
【分析】
解不等式组得到,再根据不等式组有4个整数解,写出符合条件的整数解,据此解出a的取值范围.
【详解】
解:解不等式组得,
不等式组的整数解共有4个,
不等式组的整数解分别为:-2,-1,0,1,
故答案为:.
【点睛】
本题考查一元一次不等式组的整数解,正确得出不等式组的整数解是解题关键.
5、a>3
【解析】
【分析】
由题意直接根据不等式组的解集的表示方法进行分析可得答案.
【详解】
解:由题意得:a>3,
故答案为:a>3.
【点睛】
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
三、解答题
1、121棵
【解析】
【分析】
设有名学生,根据题意列出不等式关系,求解即可.
【详解】
解:设有名学生,这批树苗总共有棵,
根据题意,得:,
不等式①的解集是:;
不等式②的解集是:,
所以,不等式组的解集是:,
因为x是整数,所以,,(棵),
答:这批树苗共有121棵.
【点睛】
此题考查了一元一次不等式组的应用,解题的关键是理解题意,正确列出不等式组进行求解.
2、(1)5000×5+5000×80%(x﹣5)<5000×90%x;(2)方案二,理由见解析
【解析】
【分析】
(1)根据方案二比方案一更便宜,结合题意列出关于x的不等式即可;
(2)根据公司买12台笔记本,分别计算出方案一和方案二所需钱数比较即可.
【详解】
解:(1)根据题意可知,按照方案一购买需要 ()元;按照方案二购买需要元.
故可列不等式为:.
(2)选择方案二,
理由:方案一购买12台需要:(元),
方案二购买12台需要:(元),
∵54000>53000,
∴选择方案二.
【点睛】
本题考查了由实际问题抽象出一元一次不等式,解题的关键是:(1)找准不等量关系,正确列出一元一次不等式;(2)根据优惠方案,列式计算.
3、(1)x>1;(2)x<11
【解析】
【分析】
(1)根据解一元一次不等式基本步骤:、移项、合并同类项、系数化为1可得;
(2)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.
【详解】
解:(1)移项,得:2x+x>3,
合并同类项,得:3x>3,
系数化为1,得:x>1;
(2)去括号,得:2x+8>3x﹣3,
移项,得:2x﹣3x>﹣3﹣8,
合并同类项,得:﹣x>﹣11,
系数化为1,得:x<11.
【点睛】
本题考查了解一元一次不等式,掌握解一元一次不等式的步骤是解题的关键.
4、不等式组的解集为,不等式组的整数解为3.
【解析】
【分析】
先求出每个不等式的解集,然后求出不等式组的解集,最后求出不等式组的整数解即可.
【详解】
解:
解不等式①得:,
解不等式②得:,
∴不等式组的解集为,
∴不等式组的整数解为3.
【点睛】
本题主要考查了解一元一次不等式组和求一元一次不等式组的整数解,解题的关键在于能够熟练掌握解不等式组的方法.
5、 (1) >;(2) <;(3) -4a+2b,结果为正
【解析】
【分析】
(1)根据不等式的基本性质即可求解;
(2)根据有理数的乘法法则即可求解;
(3)先化简,再根据根据不等式的基本性质即可求解;
【详解】
解:∵a<0
∴a>2a
(2) ∵a<c<b<0,
∴ac>0(同号两数相乘得正),
∴abc<0(不等式两边乘以同一个负数,不等号的方向改变).
(3) 4(c﹣a)﹣2(2c﹣b)=4c-4a-4c+2b=-4a+2b
∵a<c<0<b
∴-4a>0, 2b>0
∴-4a+2b>0
故结果为正
【点睛】
主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
相关试卷
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时练习,共21页。试卷主要包含了如图,直线AB,命题,下列说法中,假命题的个数为等内容,欢迎下载使用。
这是一份北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试同步测试题,共19页。试卷主要包含了如图,数轴上表示的解集是,如图,下列结论正确的是,下列式子,对不等式进行变形,结果正确的是等内容,欢迎下载使用。
这是一份2021学年第四章 一元一次不等式和一元一次不等式组综合与测试复习练习题,共20页。试卷主要包含了若,则x一定是,不等式组的解集是等内容,欢迎下载使用。