北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试课堂检测
展开这是一份北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试课堂检测,共20页。试卷主要包含了关于x的方程3﹣2x=3,如果点P,一元一次不等式组的解是等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组专题训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如果关于x的方程ax﹣3(x+1)=1﹣x有整数解,且关于y的不等式组有解,那么符合条件的所有整数a的个数为( )
A.3 B.4 C.5 D.6
2、在数轴上表示不等式﹣1<x2,其中正确的是( )
A. B.
C. D.
3、关于的不等式的解集如图所示,则的值是( )
A.0 B. C.2 D.6
4、不等式的解集在数轴上表示正确的是 ( )
A. B.
C. D.
5、都是实数,且a<b, 则下列不等式的变形正确的是( )
A.a+x>b+x B.-a<-b C.3a<3b D.
6、关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为( )
A.5 B.2 C.4 D.6
7、如果点P(m,1﹣2m)在第一象限,那么m的取值范围是 ( )
A. B. C. D.
8、如果关于x的不等式组有且只有3个奇数解,且关于y的方程3y+6a=22-y的解为非负整数,则符合条件的所有整数a的积为( )
A.-3 B.3 C.-4 D.4
9、一元一次不等式组的解是( )
A.x<2 B.x≥﹣4 C.﹣4<x≤2 D.﹣4≤x<2
10、若整数a使得关于x的方程的解为非负数,且使得关于y的一元一次不等式组至少有3个整数解.则所有符合条件的整数a的和为( )
A.23 B.25 C.27 D.28
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、关于的不等式的解集是,则关于的不等式的解集是___ .
2、 “x的3倍与2的和不大于5”用不等式表示为 _________.
3、已知,用“<”或“>”填空:
(1)_____;(2)______;(3)______;(4)_______0.
4、比较大小,用“”或“”填空:
(1)若,且,则_____.
(2)若,为实数,则____.
5、已知,则_________.(填“>”“=”或“<”)
三、解答题(5小题,每小题10分,共计50分)
1、解不等式组,并写出所有整数解.
2、某商场同时购进甲、乙、丙三种商品共100件,总进价为6800元,其每件的进价和售价如下表:
商品名称 | 甲 | 乙 | 丙 |
进价(元/件) | 40 | 70 | 90 |
售价(元/件) | 60 | 100 | 130 |
设甲种商品购进x件,乙种商品购进y件.
(1)商场要求购进的乙种商品数量不超过甲种商品数量,求甲种商品至少购进多少件?
(2)若销售完这些商品获得的最大利润是3100元,求甲种商品最多购进多少件?
3、解不等式组:,并把解集表示在数轴上.
4、阅读下列材料:根据绝对值的定义,表示数轴上表示数x的点与原点的距离,那么,如果数轴上两点P、Q表示的数为x1,x2时,点P与点Q之间的距离为PQ=.
根据上述材料,解决下列问题:如图,在数轴上,点A、B表示的数分别是-4,8(A、B两点的距离用AB表示),点M是数轴上一个动点,表示数m.
(1)AB= 个单位长度;
(2)若=20,求m的值;(写过程)
(3)若关于的方程无解,则a的取值范围是 .
5、已知x与1的和不大于5,完成下列各题.
(1)列出不等式;
(2)写出它的解集;
(3)将它的解集在数轴上表示出来.
---------参考答案-----------
一、单选题
1、C
【解析】
【分析】
先解关于y的不等式组可得解集为,根据关于y的不等式组有解可得,由此可得,再解关于x的方程可得解为,根据关于x的方程ax﹣3(x+1)=1﹣x有整数解可得的值为整数,由此可求得整数a的值,由此即可求得答案.
【详解】
解:,
解不等式①,得:,
解不等式②,得:,
∴不等式组的解集为,
∵关于y的不等式组有解,
∴,
解得:,
∵ax﹣3(x+1)=1﹣x,
∴ax﹣3x﹣3=1﹣x,
∴ax﹣3x+x=1+3,
∴(a﹣2)x=4,
∵关于x的方程ax﹣3(x+1)=1﹣x有整数解,a为整数,
∴a﹣2=4,2,1,﹣1,﹣2,﹣4,
解得:a=6,4,3,1,0,﹣2,
又∵,
∴a=4,3,1,0,﹣2,
∴符合条件的所有整数a的个数为5个,
故选:C
【点睛】
此题考查了解一元一次不等式组、解一元一次方程,熟练掌握相关运算法则是解本题的关键.
2、A
【解析】
【分析】
不等式﹣1<x≤2在数轴上表示不等式x>﹣1与x≤2两个不等式的公共部分,据此求解即可.
【详解】
解:“>”空心圆圈向右画折线,“≤”实心圆点向左画折线.
故在数轴上表示不等式﹣1<x⩽2如下:
故选A.
【点睛】
本题考查了在数轴上表示不等式的解集,不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
3、C
【解析】
【分析】
本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据数轴上的解集,来求得a的值.
【详解】
解:解不等式,得 ,
∵由数轴得到解集为x≤-1,
∴ ,
解得:a=2,
故选C.
【点睛】
本题考查解不等式和不等式解集的数轴表示,解题关键是根据数轴上的表示准确确定不等式的解集.
4、B
【解析】
【分析】
先解不等式,得到不等式的解集,再在数轴上表示不等式的解集即可.
【详解】
解:,
移项得:
解得:
所以原不等式得解集:.
把解集在数轴上表示如下:
故选B
【点睛】
本题考查的是一元一次不等式的解法,在数轴上表示不等式的解集,掌握“画图时,小于向左拐,大于向右拐”是解本题的关键,注意实心点与空心圈的使用.
5、C
【解析】
【分析】
根据不等式的性质逐一判断选项,即可.
【详解】
解:A、不等式的两边都加或都减同一个整式,不等号的方向不变,故A错误;
B、不等式的两边都乘或除以同一个负数,不等号的方向改变,故B错误;
C、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故C正确;
D、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故D错误;
故选:C.
【点睛】
本题考查了不等式的性质,不等式的两边都乘或除以同一个负数,不等号的方向改变.
6、C
【解析】
【分析】
先求出3﹣2x=3(k﹣2)的解为x,从而推出,整理不等式组可得整理得:,根据不等式组无解得到k>﹣1,则﹣1<k≤3,再由整数k和是整数进行求解即可.
【详解】
解:解方程3﹣2x=3(k﹣2)得x,
∵方程的解为非负整数,
∴0,
∴,
把整理得:,
由不等式组无解,得到k>﹣1,
∴﹣1<k≤3,即整数k=0,1,2,3,
∵是整数,
∴k=1,3,
综上,k=1,3,
则符合条件的整数k的值的和为4.
故选C.
【点睛】
本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求解.
7、A
【解析】
【分析】
根据第一象限的横坐标为正、纵坐标为负,列出关于m的不等式组解答即可.
【详解】
解:∵P(m,1﹣2m)在第一象限,
∴ ,解得:
故选A.
【点睛】
本题主要考查了解一元一次不等式组、平面直角坐标系等知识点,根据点在平面直角坐标系的象限列出关于m的一元一次不等式组成为解答本题的关键.
8、A
【解析】
【分析】
先求解不等式组,根据解得范围确定的范围,再根据方程解的范围确定的范围,从而确定的取值,即可求解.
【详解】
解:由关于x的不等式组解得
∵关于x的不等式组有且只有3个奇数解
∴,解得
关于y的方程3y+6a=22-y,解得
∵关于y的方程3y+6a=22-y的解为非负整数
∴,且为整数
解得且为整数
又∵,且为整数
∴符合条件的有、、
符合条件的所有整数a的积为
故选:A
【点睛】
本题主要考查一元一次不等式组的解法及一元一次方程的解法,熟练掌握一元一次不等式组的解法及一元一次方程的解法是解题的关键.
9、C
【解析】
【分析】
分别求出各不等式的解集,再求出其公共解集即可.
【详解】
解:,
解不等式①得,解得:,
解不等式②得,解得:,
故不等式组的解集为:.
故选:C.
【点睛】
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
10、B
【解析】
【分析】
表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.
【详解】
解:,
解不等式①得:,
解不等式②得:
∴不等式组的解集为:,
∵由不等式组至少有3个整数解,
∴,即整数a=2,3,4,5,…,
∵,
∴
解得:,
∵方程的解为非负数,
∴,
∴
∴得到符合条件的整数a为3,4,5,6,7,之和为25.
故选B.
【点睛】
此题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
二、填空题
1、x<##x<0.25
【解析】
【分析】
根据不等(2a−b)x+a−5b>0的解集是x<1,可得a与b的关系,根据解不等式的步骤,可得答案.
【详解】
解;不等式(2a−b)x+a−5b>0的解集是x<1,
∴2a−b<0,2a−b=5b−a,
a=2b,b<0,
2ax−b>0
4bx−b>0
4bx>b
x<,
故答案为:x<.
【点睛】
本题考查了不等式的解集,注意不等式的两边都乘以或除以同一个负数,不等号的方向改变.
2、3x+2≤5
【解析】
【分析】
不大于就是小于等于的意思,根据x的3倍与2的和不大于5,可列出不等式.
【详解】
解:由题意得:3x+2≤5,
故答案为:3x+2≤5.
【点睛】
本题考查由实际问题抽象出一元一次不等式,关键是抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.
3、 < < > <
【解析】
【分析】
根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.
【详解】
解:(1)不等式两边都减去3可得;
(2)不等式两边都乘以6可得;
(3)不等式两边都乘以可得;
(4)不等式两边都减去b可得;
故答案为: <;<;>;<.
【点睛】
此题主要考查了不等式的基本性质.解题时要注意:在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.解题的关键是掌握不等式的基本性质.
4、 <
>
【解析】
【分析】
(1)由不等式的性质可得,即可求解.
(2)将两个代数式进行作差,求出差的正负,从而判断出代数式的大小.
【详解】
解:(1),且,
,
,
故答案为:.
(2)
,
.
故答案为:.
【点睛】
本题主要是考察了比较代数式的大小以及不等式的基本性质,常见的比较大小的方法有:作差法、作商法、两边同时平方等,熟练运用合适的方法进行比较,是解决此类题的关键.
5、>
【解析】
【分析】
根据不等式性质即可得到答案.
【详解】
解:∵ ,
∴,
∴
故答案为:>.
【点睛】
本题考查不等式性质的应用,解题的关键是掌握不等式性质.
三、解答题
1、不等式组的解集为:;整数解为:-1,0,1,2.
【解析】
【分析】
分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,从而而可得不等式组得整数解.
【详解】
解:,
解不等式①得:,
解不等式②得:,
∴不等式组的解集为:,
∴不等式组的整数解为:-1,0,1,2.
【点睛】
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
2、(1)甲种商品至少购进32件;(2)甲种商品最多购进40件.
【解析】
【分析】
(1)先根据题意用含x的式子表示出y,再列不等式可得答案;
(2)根据甲、乙、丙的进价和售价列出不等式,再解不等式可得答案.
【详解】
解:(1)根据题意,得40x+70y+90(100-x-y)=6800,
解得y=110−x,
∵乙种商品数量不超过甲种商品数量,
∴y≤x,
∴110−x≤x,
解得x≥31.
答:甲种商品至少购进32件;
(2)根据题意,得20x+30y+40(100-x-y)≤3100,
由(1),得y=110−x,
代入不等式,解得x≤40,
答:甲种商品最多购进40件.
【点睛】
本题考查一元一次不等式的实际应用,能够根据题意用含x的式子表示出y是解题关键.
3、;图见解析
【解析】
【分析】
先求出每个不等式的解集,然后求出不等式组的解集,最后在数轴上表示出不等式组的解集即可.
【详解】
解:
解不等式①得:,
解不等式②得:,
故此不等式的解集为:,
数轴上表示解集为:
【点睛】
本题主要考查了解一元一次不等式组,并在数轴上表示不等式组的解集,解题的关键在于能够熟练掌握求不等式组的解集的方法.
4、(1)12;(2)m=-8或12;(3)
【解析】
【分析】
(1)根据题中所给数轴上两点距离公式可直接进行求解;
(2)由题意可分当,,三种情况进行分类求解即可;
(3)由题意可分当,,,四种情况进行分类求解,然后根据方程无解可得出a的取值范围.
【详解】
解:(1)由题意得:;
故答案为12;
(2)由题意得:①当时,则有:,解得:;
②当时,则有,方程无解;
③当时,则有,解得:,
综上所述:m=-8或12;
(3)由题意得:①当时,则有,解得:,
∵方程无解,
∴,解得:;
②当时,则有,解得:,
∵方程无解,
∴或,解得:或;
③当时,则有,解得:,
∵方程无解,
∴或,解得:或;
④当时,则有,解得:,
∵方程无解,
∴,解得:;
综上所述:当关于的方程无解,则a的取值范围是;
故答案为.
【点睛】
本题主要考查数轴上两点距离、一元一次不等式的解法及一元一次方程的解法,熟练掌握数轴上两点距离、一元一次不等式的解法及一元一次方程的解法是解题的关键.
5、(1)x+1≤5;(2)x≤4;(3)数轴上表示见解析
【解析】
【分析】
(1)根据题意,x与1的和为,不大于即为:,组合起来即可列出不等式;
(2)根据不等式的性质,求解不等式即可得出解集;
(3)根据在数轴上表示解集的方法画出图象即可.
【详解】
解:
(1)x与1的和为,不大于即为:;
∴;
(2)
,
,
不等式的解集是;
(3)把表示在数轴上如图所示:
.
【点睛】
题目主要考查不等式的应用及求不等式的解集和在数轴上表示解集,熟练掌握求解不等式方法是解题关键.
相关试卷
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试综合训练题,共23页。试卷主要包含了如图,直线AB等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试达标测试,共21页。试卷主要包含了如图,下列条件中能判断直线的是等内容,欢迎下载使用。
这是一份初中北京课改版第七章 观察、猜想与证明综合与测试巩固练习,共21页。试卷主要包含了下列语句中,错误的个数是等内容,欢迎下载使用。