初中北京课改版第四章 一元一次不等式和一元一次不等式组综合与测试同步训练题
展开这是一份初中北京课改版第四章 一元一次不等式和一元一次不等式组综合与测试同步训练题,共22页。试卷主要包含了如图,数轴上表示的解集是,已知,为实数,下列说法等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如果,m,这三个实数在数轴上所对应的点从左到右依次排列,那么m的取值范围是( )
A. B. C. D.
2、对不等式进行变形,结果正确的是( )
A. B. C. D.
3、关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组有解,则符合条件的整数k的值之和为( )
A.5 B.4 C.3 D.2
4、如果 , 那么下列不等式中不成立的是( )
A. B.
C. D.
5、如果x>y,则下列不等式正确的是( )
A.x﹣1<y﹣1 B.5x<5y C. D.﹣2x>﹣2y
6、若x+2022>y+2022,则( )
A.x+2<y+2 B.x-2<y-2 C.-2x<-2y D.2x<2y
7、如图,数轴上表示的解集是( )
A.﹣3<x≤2 B.﹣3≤x<2 C.x>﹣3 D.x≤2
8、已知,为实数,下列说法:①若,且,互为相反数,则;②若,,则;③若,则;④若,则是正数;⑤若,且,则,其中正确的说法有 个.A.2 B.3 C.4 D.5
9、若m>n,则下列选项中不成立的是( )
A.m+4>n+4 B.m﹣4>n﹣4 C. D.﹣4m>﹣4n
10、若m>n,则下列不等式成立的是( )
A.m﹣5<n﹣5 B. C.﹣5m>﹣5n D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若是关于x的一元一次不等式,则m的值为______________.
2、 “a的2倍与的差小于5用不等式表示__________________.
3、a,b两个实数在数轴上的对应点如图所示:
用“<”或“>”填空:
(1)a______b;
(2)_____;
(3)______0;
(4)______0;
(5)______;
(6)______a.
4、已知关于x的一元一次不等式的解集为,那么关于y的一元一次不等式的解集为___________.
5、已知那么|x-3|+|x-1|=_____.
三、解答题(5小题,每小题10分,共计50分)
1、用不等式表示:
(1)x与-3的和是负数;
(2)x与5的和的28%不大于-6;
(3)m除以4的商加上3至多为5.
2、(1)解不等式4x﹣1>3x;
(2)解不等式组.
3、如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程的解为,不等式组的解集为,因为,所以称方程为不等式组的关联方程.
(1)在方程①,②;③中,不等式组的关联方程是_________(填序号)
(2)若不等式组的一个关联方程的解是整数,且这个关联方程是,则常数_________.
(3)①解两个方程:和
②是否存在整数m,使得方程和都是关于x的不等式组的关联方程?若存在,直接写出所有符合条件的整数m的值;若不存在,请说明理由.
4、 “中秋节”是中华民族古老的传统节日.甲、乙两家超市在“中秋节”当天对一种原来售价相同的月饼分别推出了不同的优惠方案.
甲超市方案:购买该种月饼超过200元后,超出200元的部分按95%收费;
乙超市方案:购买该种月饼超过300元后,超出300元的部分按90%收费.
x(单位:元) | 实际在甲超市的花费(单位:元) | 实际在乙超市的花费(单位:元) |
0<x≤200 | x | x |
200<x≤300 |
| x |
x>300 |
|
|
设某位顾客购买了x元的该种月饼.
(1)补充表格,填写在“横线”上;
(2)分类讨论,如果顾客在“中秋节”当天购买该种月饼超过200元,那么到哪家超市花费更少?
5、某体育用品商店开展促销活动,有两种优惠方案.
方案一:不购买会员卡时,乒乓球享受8.5折优惠,乒乓球拍购买5副(含5副)以上才能享受8.5折优惠,5副以下必须按标价购买.
方案二:办理会员卡时,全部商品享受八折优惠,小健和小康的谈话内容如下:
小健:听说这家商店办一张会员卡是20元.
小康:是的,上次我办了一张会员卡后,买了4副乒乓球拍,结果费用节省了12元.(会员卡限本人使用)
(1)求该商店销售的乒乓球拍每副的标价.
(2)如果乒乓球每盒10元,小健需购买乒乓球拍6副,乒乓球a盒,小健如何选择方案更划算?
---------参考答案-----------
一、单选题
1、C
【解析】
【分析】
如果2m,m,这三个实数在数轴上所对应的点从左到右依次排列,则可得三个数的大小关系,列出相应的不等式组进行求解,然后根据确定不等式组解集方法(同大取大,同小取小),即可解得m的范围.
【详解】
解:根据题意得:
,
解①得:,
解②得:,
解③得:,
∴m的取值范围是.
故选:C.
【点睛】
题目主要考查不等式组的应用及解法,理解题意,列出相应的不等式组,熟练掌握确定不等式组解集的方法是解题关键.
2、D
【解析】
【分析】
根据不等式的基本性质进行逐一判断即可得解.
【详解】
A.不等式两边同时减b得,故选项A错误;
B.不等式两边同时减2得,故选项B错误;
C.不等式两边同时乘2得,故选项C错误;
D.不等式两边同时乘得,不等式两边再同时加1得,故选项D准确.
故选:D.
【点睛】
本题主要考查了不等式的基本性质,注意不等式两边都加上或减去一个数或整式,不等号方向不变,不等式两边同时乘或除以一个正数,不等号的方向不变,不等式两边同时乘或除以一个负数,要改变不等号的方向.
3、A
【解析】
【分析】
先求出方程的解与不等式组的解集,再根据题意相确定的取值范围即可.
【详解】
解:解方程3﹣2x=3(k﹣2),得:,
由题意得,解得:,
解不等式,得:,
解不等式,得:,
不等式组有解,
,则,
符合条件的整数的值的和为,
故选A.
【点睛】
本题主要考查了一元一次方程的解、一元一次不等式组的整数解等知识点,明确题意、正确求解不等式成为解答本题的关键.
4、D
【解析】
【分析】
根据不等式的性质逐个判断即可.不等式的性质1:不等式两边同时加上或减去同一个数,不等号的方向不改变;不等式的性质2:不等式两边同时乘以或除以同一个正数,不等号的方向不改变;不等式两边同时乘以或除以同一个负数,不等号的方向要改变.
【详解】
解:A、∵,
∴,选项正确,不符合题意;
B、∵,
∴,选项正确,不符合题意;
C、∵,
∴,选项正确,不符合题意;
D、∵,
∴,选项错误,符合题意.
故选:D.
【点睛】
此题考查了不等式的性质,解题的关键是熟练掌握不等式的性质.不等式的性质1:不等式两边同时加上或减去同一个数,不等号的方向不改变;不等式的性质2:不等式两边同时乘以或除以同一个正数,不等号的方向不改变;不等式两边同时乘以或除以同一个负数,不等号的方向要改变.
5、C
【解析】
【分析】
根据不等式的性质解答.①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.
【详解】
解:A.∵x>y,
∴x﹣1>y﹣1,故本选项不符合题意;
B.∵x>y,
∴5x>5y,故本选项不符合题意;
C.∵x>y,
∴,故本选项符合题意;
D.∵x>y,
∴﹣2x<﹣2y,故本选项不符合题意;
故选:C.
【点睛】
此题考查了不等式的性质,熟记不等式的性质并正确应用是解题的关键.
6、C
【解析】
【分析】
直接根据不等式的性质可直接进行排除选项
【详解】
解:∵x+2022>y+2022,
∴x>y,
∴x+2>y+2,x-2>y-2,-2x<-2y,2x>2y.
故答案为:C.
【点睛】
本题主要考查不等式的性质,熟练掌握不等式两边同时加或减去同一个整式,不等号方向不变;不等式两边同时乘(或除以)同一个大于0的整式,不等号方向不变;不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变,据此判断即可.
7、A
【解析】
【分析】
根据求不等式组的解集的表示方法,可得答案.
【详解】
解:由图可得,x>﹣3且x≤2
∴在数轴上表示的解集是﹣3<x≤2,
故选A.
【点睛】
本题考查了在数轴上表示不等式组的解集,不等式组的解集在数轴上的表示方法是:大大取大,小小取小,大小小大中间找,小小大大无解.
8、C
【解析】
【分析】
①除0外,互为相反数的商为,可作判断;
②由两数之和小于0,两数之积大于0,得到与都为负数,即小于0,利用负数的绝对值等于它的相反数化简得到结果,即可作出判断;
③由的绝对值等于它的相反数,得到为非正数,得到与的大小,即可作出判断;
④由绝对值大于绝对值,分情况讨论,即可作出判断;
⑤先根据,得,由和有理数乘法法则可得,,分情况可作判断.
【详解】
解:①若,且,互为相反数,则,本选项正确;
②若,则与同号,由,则,,则,本选项正确;
③,即,
,即,本选项错误;
④若,
当,时,可得,即,,所以为正数;
当,时,,,所以为正数;
当,时,,,所以为正数;
当,时,,,所以为正数,
本选项正确;
⑤,
,
,
,,
当时,,
,不符合题意;
所以,,
,
则,
本选项正确;
则其中正确的有4个,是①②④⑤.
故选:.
【点睛】
本题考查了相反数,不等式的性质,绝对值和有理数的混合运算,熟练掌握各种运算法则是解本题的关键.
9、D
【解析】
【分析】
根据不等式的基本性质进行解答即可.
【详解】
解:∵m>n,
A、m+4>n+4,成立,不符合题意;
B、m﹣4>n﹣4,成立,不符合题意;
C、,成立,不符合题意;
D、﹣4m﹣4n,原式不成立,符合题意;
故选:D.
【点睛】
本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解本题的关键.
10、D
【解析】
【分析】
根据不等式的性质:不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,可得答案.
【详解】
解:A、在不等式m>n的两边同时减去5,不等式仍然成立,即m﹣5>n﹣5,原变形错误,故此选项不符合题意;
B、在不等式m>n的两边同时除以5,不等式仍然成立,即,原变形错误,故此选项不符合题意;
C、在不等式m>n的两边同时乘以﹣5,不等式号方向改变,即﹣5m<﹣5n,原变形错误,故此选项不符合题意;
D、在不等式m>n的两边同时乘以﹣5,不等式号方向改变,即,原变形正确,故此选项符合题意.
故选:D.
【点睛】
本题考查了不等式的性质,不等式的基本性质是解不等式的主要依据,必须熟练地掌握.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.
二、填空题
1、1
【解析】
【分析】
根据一元一次不等式的定义可得:且,求解即可.
【详解】
解:根据一元一次不等式的定义可得:且
解得
故答案为1
【点睛】
此题考查了一元一次不等式的定义,解题的关键是掌握一元一次不等式的概念.
2、
【解析】
【分析】
根据题意表示出a的2倍与的差小于5即可.
【详解】
解:由题意可得:a的2倍与的差小于5可表示为.
故填.
【点睛】
本题考查列一元一次不等式,掌握列一元一次不等式的基本方法成为解答本题的关键.
3、 > < < > < <
【解析】
【分析】
首先观察数轴,得到b<0<a且|b|>|a|,进一步利用加减法计算方法和绝对值的意义解答即可.
【详解】
解:(1)a>b;
(2)|a|<|b|;
(3)a+b<0;
(4)a-b>0;
(5)a+b<a-b;
(6)ab<a.
故答案为:(1)>;(2)<;(3)<;(4)>;(5)<;(6)<.
【点睛】
本题考查了利用数轴、绝对值的意义以及有理数的加减法计算方法解决问题.
4、
【解析】
【分析】
设则化为:整理可得:,从而可得的解集是不等式的解集,从而可得答案.
【详解】
解: 关于x的一元一次不等式的解集为,
设
则化为:
两边都乘以得: 即
的解集为:的解集,
故答案为:
【点睛】
本题考查的是求解一元一次不等式的解集,掌握“整体法求解不等式的解集”是解本题的关键.
5、2
【解析】
【分析】
先求出不等式组的解集,再根据x的取值化简绝对值即可求解.
【详解】
解:
解不等式①得,
解不等式②得,
∴不等式组的解集为: ,
∴x-3<0,x-1>0,
∴.
故答案为:2
【点睛】
本题考查了求不等式组的解集和绝对值的化简,正确求出不等式组的解集,正确化简绝对值是解题关键.
三、解答题
1、(1)x-3<0;(2)28%(x+5)≤-6;(3)≤5.
【解析】
【分析】
(1)根据负数是小于0的数列不等式即可;
(2)不大于即小于或等于,根据不大于的含义列不等式即可;
(3)至多即小于或等于,根据至多的含义列不等式即可.
【详解】
解:(1)x-3<0;
(2)28%(x+5)≤-6;
(3)≤5.
【点睛】
本题考查的列不等式,列不等式时,应抓住“大于”、“不大于”、“不是”、“至多”、“非负数”等表示不等关系的关键性词语,进而根据这些关键词的内涵列出不等式.在不等式及其应用的题目中,经常会出现一些表示不等关系的词语.正确理解这些关键词很重要.如:若x是非负数,则x≥0;若x是非正数,则x≤0;若x大于y,则有x-y>0;若x小于y,则有x-y<0等.
2、(1);(2).
【解析】
【分析】
(1)直接移项化简即可求得
(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.
【详解】
解:(1)4x﹣1>3x;
解得;
(2)
解不等式①得:,
解不等式②得:
不等式组的解集为
【点睛】
本题考查了解不等式和解不等式组,正确的计算以及求不等式组的解集是解题的关键.
3、(1)③;(2)2;(3)①;;②符合条件的整数m为:4、5、6.
【解析】
【分析】
(1)分别解不等式组和各一元一次方程,再根据“关联方程”的定义即可判断;
(2)解不等式组得出其整数解,再写出以此整数解为解的一元一次方程即可得;
(3)①根据解一元一次方程的步骤:先去分母,然后去括号,再合并同类项,系数化为1即可;
②解不等式组得出:,由①得:和是不等式组的整数解,根据不等式组整数解的确定可得答案.
【详解】
解:(1)解不等式组
解得:,
解①得:,不在内,故①是不等式组的关联方程;
解②得:,不在内,故②不是不等式组的关联方程;
解③得:,在内,故③是不等式组的关联方程;
故答案为:③;
(2)解不等式组
解得:,
因此不等式组的整数解为:,
将代入关联方程,
可得:,
解得:.
故答案为:.
(3)①解,
去分母得:,
解得:;
,
去分母得:,
去分母合并同类项得:,
解得:;
②不等式组,
解得:,
由题意,和是不等式组的整数解,
∴,
解得:,
∴m的取值范围为:
∴所有符合条件的整数m为:4、5、6.
【点睛】
本题主要考查解一元一次不等式和一元一次方程,理解并掌握“关联方程”的定义和解一元一次不等式、一元一次方程的方法是解题的关键.
4、;;;(2)当顾客在“中秋节”当天购买该种月饼超过200元不超过400元时,选择甲超市花费更少;当购买该种月饼400元时,选择两家超市花费相同;当购买该种月饼超过400元时,选择乙超市花费更少
【解析】
【分析】
(1)当时,利用实际在甲超市的花费超过200元的费用可求出实际在甲超市的花费;当时,利用实际在乙超市的花费超过300元的费用可求出实际在乙超市的花费;
(2)当时,显然选择甲超市花费更少;当时,分,及三种情况求出的取值范围(或的值),进而可得出结论.
【详解】
解:(1)当时,实际在甲超市的花费为元;
当时,实际在甲超市的花费为元,
实际在乙超市的花费为元.
故答案为:;;.
(2)当时,显然选择甲超市花费更少;
当时,若,
解得:;
若,
解得:;
若,
解得:.
答:当顾客在“中秋节”当天购买该种月饼超过200元不超过400元时,选择甲超市花费更少;当购买该种月饼400元时,选择两家超市花费相同;当购买该种月饼超过400元时,选择乙超市花费更少.
【点睛】
本题考查了一元一次不等式的应用、列代数式以及一元一次方程的应用,解题的关键是:(1)根据各数量之间的关系,用含的代数式表示出各数量;(2)根据各数量之间的关系,正确列出一元一次不等式(或一元一次方程).
5、(1)40元;(2)当时,两种方案一样;当时,选择方案一;当时,选择方案二
【解析】
【分析】
(1)设商店销售的乒乓球拍每副的标价为元,根据题意列出一元一次方程,解方程即可求得乒乓球拍每副的标价;
(2)根据两种方案分别计算小健购买乒乓球拍6副,乒乓球a盒,所需费用,比较即可
【详解】
(1)设商店销售的乒乓球拍每副的标价为元,根据题意得
解得
答:该商店销售的乒乓球拍每副的标价为元
(2)方案一:
方案二:
若,
即时,两种方案一样
当<
解得
即当时,选择方案一,
当>
解得
即当时,选择方案二
【点睛】
本题考查了一元一次方程的应用,一元一次不等式的应用,根据题意列出方程或不等式是解题的关键.
相关试卷
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习题,共24页。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试同步训练题,共18页。试卷主要包含了下列计算中,正确的是,下列运算正确的是,已知整数,下列计算正确的是等内容,欢迎下载使用。
这是一份数学七年级下册第八章 因式分解综合与测试综合训练题,共15页。试卷主要包含了下列因式分解正确的是,把代数式分解因式,正确的结果是等内容,欢迎下载使用。