初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试当堂达标检测题
展开这是一份初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试当堂达标检测题,共22页。试卷主要包含了关于x的方程3﹣2x=3,一元一次不等式组的解是等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组专题训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,则a的取值范围是( )
A.a<﹣2 B.a≤1 C.﹣2<a≤1 D.﹣2≤a≤1
2、若a>b,则下列不等式一定成立的是( )
A.﹣2a<﹣2b B.am<bm C.a﹣3<b﹣3 D.+1<+1
3、某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打( )折.A.9 B.8 C.7 D.6
4、关于的不等式的解集如图所示,则的值是( )
A.0 B. C.2 D.6
5、如果,m,这三个实数在数轴上所对应的点从左到右依次排列,那么m的取值范围是( )
A. B. C. D.
6、关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为( )
A.5 B.2 C.4 D.6
7、一元一次不等式组的解是( )
A.x<2 B.x≥﹣4 C.﹣4<x≤2 D.﹣4≤x<2
8、不符式的解集在数轴上表示正确的是( )
A. B.
C. D.
9、若关于x的分式方程+1=有整数解,且关于y的不等式组恰有2个整数解,则所有满足条件的整数a的值之积是( )
A.0 B.24 C.﹣72 D.12
10、如果 , 那么下列不等式中不成立的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、用不等式表示“的3倍与2的差小于1”:_____.
2、已知不等式(a﹣1)x>a﹣1的解集是x<1,则a的取值范围为______.
3、 “x的2倍与3的差小于5”用不等式表示为:_________.
4、用不等式表示下列各语句所描述的不等关系:
(1)a的绝对值与它本身的差是非负数________;
(2)x与-5的差不大于2________;
(3)a与3的差大于a与a的积________;
(4)x与2的平方差是—个负数________.
5、已知,用“<”或“>”填空:
(1)_____;(2)______;(3)______;(4)_______0.
三、解答题(5小题,每小题10分,共计50分)
1、如图,点A和点B在数轴上分别对应数a和b,其中a和b满足(a+4)2=﹣|8﹣b|,原点记作O.
(1)求a和b;
(2)数轴有一对动点A1和B1分别从点A和B出发沿数轴正方向运动,速度分别为1个单位长度/秒和2个单位长度/秒.
①经过多少秒后满足AB1=3A1B?
②另有一动点O1从原点O以某一速度出发沿数轴正方向运动,始终保持在与之间,且满足,运动过程中对于确定的m值有且只有一个时刻t满足等式:AO1+BO1=m,请直接写出符合条件m的取值范围.
2、某厨具店购进A型和B型两种电饭煲进行销售, 其进价与售价如表:
| 进价(元/台) | 售价(元/台) |
A型 | 200 | 300 |
B型 | 180 | 260 |
(1)一季度, 厨具店购进这两种电饭煲共30台, 用去了5600元, 问该厨具店购进A,B型电饭煲各多少台?
(2)为了满足市场需求, 二季度厨具店决定用不超过9560元的资金采购两种电饭煲共50 台, 且A型电饭俣的数量不少于B型电饭煲数量, 问厨具店有哪几种进货方案?
(3)在(2)的条件下, 全部售完, 请你通过计算判断, 哪种进货方案厨具店利润最大, 并求出最大利润.
3、 “中秋节”是中华民族古老的传统节日.甲、乙两家超市在“中秋节”当天对一种原来售价相同的月饼分别推出了不同的优惠方案.
甲超市方案:购买该种月饼超过200元后,超出200元的部分按95%收费;
乙超市方案:购买该种月饼超过300元后,超出300元的部分按90%收费.
x(单位:元) | 实际在甲超市的花费(单位:元) | 实际在乙超市的花费(单位:元) |
0<x≤200 | x | x |
200<x≤300 |
| x |
x>300 |
|
|
设某位顾客购买了x元的该种月饼.
(1)补充表格,填写在“横线”上;
(2)分类讨论,如果顾客在“中秋节”当天购买该种月饼超过200元,那么到哪家超市花费更少?
4、解不等式:.
5、(1)解不等式x+2<6;
(2)解不等式+1≥,并把它的解集在数轴上表示出来.
---------参考答案-----------
一、单选题
1、A
【解析】
【分析】
根据不等式解的定义列出不等式,求出解集即可确定出a的范围.
【详解】
解:∵x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,
∴ 且 ,
即﹣4(﹣2a+2)≤0且﹣(a+2)>0,
解得:a<﹣2.
故选:A.
【点睛】
此题考查了不等式的解集,熟练掌握一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集是解题的关键.
2、A
【解析】
【分析】
由题意直接依据不等式的基本性质对各个选项进行分析判断即可.
【详解】
解:A.∵a>b,
∴﹣2a<﹣2b,故本选项符合题意;
B.a>b,当m>0时,am>bm,故本选项不符合题意;
C.∵a>b,
∴a﹣3>b﹣3,故本选项不符合题意;
D.∵a>b,
∴,
∴,故本选项不符合题意;
故选:A.
【点睛】
本题考查不等式的基本性质,注意掌握不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.
3、C
【解析】
【分析】
设打x折,由题意:某种商品进价为700元,标价1100元,商店准备打折销售,但要保证利润率不低于10%,列出一元一次不等式,解不等式即可.
【详解】
设打x折,
根据题意得:1100×﹣700≥700×10%,
解得:x≥7,
∴至多可以打7折
故选:C.
【点睛】
本题考查了一元一次不等式的知识;解题的关键是熟练掌握一元一次不等式的性质,从而完成求解.
4、C
【解析】
【分析】
本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据数轴上的解集,来求得a的值.
【详解】
解:解不等式,得 ,
∵由数轴得到解集为x≤-1,
∴ ,
解得:a=2,
故选C.
【点睛】
本题考查解不等式和不等式解集的数轴表示,解题关键是根据数轴上的表示准确确定不等式的解集.
5、C
【解析】
【分析】
如果2m,m,这三个实数在数轴上所对应的点从左到右依次排列,则可得三个数的大小关系,列出相应的不等式组进行求解,然后根据确定不等式组解集方法(同大取大,同小取小),即可解得m的范围.
【详解】
解:根据题意得:
,
解①得:,
解②得:,
解③得:,
∴m的取值范围是.
故选:C.
【点睛】
题目主要考查不等式组的应用及解法,理解题意,列出相应的不等式组,熟练掌握确定不等式组解集的方法是解题关键.
6、C
【解析】
【分析】
先求出3﹣2x=3(k﹣2)的解为x,从而推出,整理不等式组可得整理得:,根据不等式组无解得到k>﹣1,则﹣1<k≤3,再由整数k和是整数进行求解即可.
【详解】
解:解方程3﹣2x=3(k﹣2)得x,
∵方程的解为非负整数,
∴0,
∴,
把整理得:,
由不等式组无解,得到k>﹣1,
∴﹣1<k≤3,即整数k=0,1,2,3,
∵是整数,
∴k=1,3,
综上,k=1,3,
则符合条件的整数k的值的和为4.
故选C.
【点睛】
本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求解.
7、C
【解析】
【分析】
分别求出各不等式的解集,再求出其公共解集即可.
【详解】
解:,
解不等式①得,解得:,
解不等式②得,解得:,
故不等式组的解集为:.
故选:C.
【点睛】
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
8、D
【解析】
【分析】
先求出不等式的解集,再根据解集在数轴上的表示方法表示即可.
【详解】
解:,
解得:,
在数轴上表示解集为:
,
故选:D.
【点睛】
题目主要考查了求不等式的解集,在数轴上表示不等式的解集,掌握数轴上表示不等式解集的方法是解题的关键.
9、D
【解析】
【分析】
根据分式方程的解为正数即可得出a=﹣1或﹣3或﹣4或2或﹣6,根据不等式组有解,即可得出﹣1+≤y<,找出﹣3<﹣1+≤﹣2中所有的整数,将其相乘即可得出结论.
【详解】
先解分式方程,再解一元一次不等式组,进而确定a的取值.
解:∵+1=,
∴x+x﹣2=2﹣ax.
∴2x+ax=2+2.
∴(2+a)x=4.
∴x= .
∵关于x的分式方程+1=有整数解,
∴2+a=±1或±2或±4且≠2.
∴a=﹣1或﹣3或﹣4或2或﹣6.
∵2(y﹣1)+a﹣1≤5y,
∴2y﹣2+a﹣1≤5y.
∴2y﹣5y≤1﹣a+2.
∴﹣3y≤3﹣a.
∴y≥﹣1+.
∵2y+1<0,
∴2y<﹣1.
∴y<.
∴﹣1+≤y<.
∵关于y的不等式组恰有2个整数解,
∴﹣3<﹣1+≤﹣2.
∴﹣6<a≤﹣3.
又∵a=﹣1或﹣3或﹣4或2或﹣6,
∴a=﹣3或﹣4.
∴所有满足条件的整数a的值之积是﹣3×(﹣4)=12.
故选:D.
【点睛】
本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组有解,找出﹣3<﹣1+≤﹣2是解题的关键.
10、D
【解析】
【分析】
根据不等式的性质逐个判断即可.不等式的性质1:不等式两边同时加上或减去同一个数,不等号的方向不改变;不等式的性质2:不等式两边同时乘以或除以同一个正数,不等号的方向不改变;不等式两边同时乘以或除以同一个负数,不等号的方向要改变.
【详解】
解:A、∵,
∴,选项正确,不符合题意;
B、∵,
∴,选项正确,不符合题意;
C、∵,
∴,选项正确,不符合题意;
D、∵,
∴,选项错误,符合题意.
故选:D.
【点睛】
此题考查了不等式的性质,解题的关键是熟练掌握不等式的性质.不等式的性质1:不等式两边同时加上或减去同一个数,不等号的方向不改变;不等式的性质2:不等式两边同时乘以或除以同一个正数,不等号的方向不改变;不等式两边同时乘以或除以同一个负数,不等号的方向要改变.
二、填空题
1、
【解析】
【分析】
根据倍、差、不等式的定义即可得.
【详解】
解:“的3倍与2的差小于1” 用不等式表示为,
故答案为:.
【点睛】
本题考查了列不等式,掌握理解不等式的定义是解题关键.
2、a<1
【解析】
【分析】
根据不等式的性质3,可得答案.
【详解】
解:∵(a﹣1)x>a﹣1的解集是x<1,不等号方向发生了改变,
∴a﹣1<0,
∴a<1.
故答案为:a<1.
【点睛】
本题考查了不等式的性质,不等式的两边都除以同一个负数,不等号的方向改变.
3、2x﹣3<5
【解析】
【分析】
x的2倍表示为:2x,小于表示为:<,由此可得不等式.
【详解】
解:x的2倍与3的差小于5,用不等式表示为:2x﹣3<5.
故答案为:2x﹣3<5.
【点睛】
本题考查了由实际问题抽象一元一次不等式的知识,关键是将文字描述转化为数学语言.
4、 |a|-a≥0 x-(-5)≤2
【解析】
【分析】
(1)a的绝对值表示为:,根据与它本身的差是非负数,即可列出不等式;
(2)x与-5的差表示为:,不大于2表示为:,综合即可列出不等式;
(3)a与3的差表示为:,大于a与a的积表示为:,综合即可列出不等式;
(4)x与2的平方差表示为:,负数表示为:,综合即可列出不等式.
【详解】
解:(1)a的绝对值表示为:,与它本身的差是非负数,
可得:;
(2)x与-5的差表示为:,不大于2表示为:,
可得:;
(3)a与3的差表示为:,大于a与a的积表示为:,
可得:;
(4)x与2的平方差表示为:,负数表示为:,
可得:;
故答案为:①;②;③;④.
【点睛】
题目主要考查不等式的应用,依据题意,理清不等关系,列出相应不等式是解题关键.
5、 < < > <
【解析】
【分析】
根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.
【详解】
解:(1)不等式两边都减去3可得;
(2)不等式两边都乘以6可得;
(3)不等式两边都乘以可得;
(4)不等式两边都减去b可得;
故答案为: <;<;>;<.
【点睛】
此题主要考查了不等式的基本性质.解题时要注意:在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.解题的关键是掌握不等式的基本性质.
三、解答题
1、(1);(2)①或;②
【解析】
【分析】
(1)先把条件化为:再利用非负数的性质可得:;
(2)①先表示对应的数分别为: 再求解再结合已知AB1=3A1B,列方程,再解方程即可;②设的速度为每秒个单位,则对应的数为 再表示 代入 可得: 再表示 再结合已知可得答案.
【详解】
解:(1)
解得:
(2)①由(1)得:对应的数分别为
动点A1和B1分别从点A和B出发沿数轴正方向运动,速度分别为1个单位长度/秒和2个单位长度/秒,
对应的数分别为: 如图,
AB1=3A1B,
或
解得:或
②设的速度为每秒个单位,则对应的数为
解得: 经检验:符合题意;
当时,即时,
当时,即时,
运动过程中对于确定的m值有且只有一个时刻t满足等式:AO1+BO1=m,
此时
即符合条件的m的取值范围为:
【点睛】
本题考查的是非负数的性质,数轴上的动点问题,数轴上两点之间的距离,绝对值方程的应用,一元一次方程的应用,一元一次不等式的应用,熟练的应用以上知识解题是关键.
2、(1)厨具店购进A,B型电饭煲各10台,20台;(2)有四种方案:①购买A型电饭煲25台,购买B型电饭煲25台;②购买A型电饭煲26台,购买B型电饭煲24台;③购买A型电饭煲27台,购买B型电饭煲23台,④购买A型电饭煲28,购买B型电饭煲22台;(3)购买A型电饭煲28,购买B型电饭煲22台时,橱具店赚钱最多.
【解析】
【分析】
(1)设橱具店购进A型电饭煲x台,B型电饭煲y台,根据橱具店购进这两种电饭煲共30台且用去了5600元,即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,即可;
(2)设购买A型电饭煲a台,则购买B型电饭煲(50−a)台,根据橱具店决定用不超过9560元的资金采购电饭煲和电压锅共50个且A型电饭俣的数量不少于B型电饭煲数量,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围,由此即可得出各进货方案;
(3)根据总利润=单个利润×购进数量分别求出各进货方案的利润,比较后即可得出结论.
【详解】
解:(1)设橱具店购进A型电饭煲x台,B型电饭煲y台,
根据题意得:,解得:,
答:厨具店购进A,B型电饭煲各10台,20台;
(2)设购买A型电饭煲a台,则购买B型电饭煲(50−a)台,
根据题意得:,
解得:25≤a≤28.
又∵a为正整数,
∴a可取25,26,27,28,
故有四种方案:①购买A型电饭煲25台,购买B型电饭煲25台;②购买A型电饭煲26台,购买B型电饭煲24台;③购买A型电饭煲27台,购买B型电饭煲23台,④购买A型电饭煲28,购买B型电饭煲22台;
(3)设橱具店赚钱数额为w元,
当a=25时,w=25×100+25×80=4500;
当a=26时,w=26×100+24×80=4520;
当a=27时,w=27×100+23×80=4540;
当a=28时,w=28×100+22×80=4560;
综上所述,当a=28时,w最大,
即购买A型电饭煲28,购买B型电饭煲22台时,橱具店赚钱最多.
【点睛】
本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据数量关系,列出关于a的一元一次不等式组;(3)根据总利润=单个利润×购进数量分别求出各进货方案的利润.
3、;;;(2)当顾客在“中秋节”当天购买该种月饼超过200元不超过400元时,选择甲超市花费更少;当购买该种月饼400元时,选择两家超市花费相同;当购买该种月饼超过400元时,选择乙超市花费更少
【解析】
【分析】
(1)当时,利用实际在甲超市的花费超过200元的费用可求出实际在甲超市的花费;当时,利用实际在乙超市的花费超过300元的费用可求出实际在乙超市的花费;
(2)当时,显然选择甲超市花费更少;当时,分,及三种情况求出的取值范围(或的值),进而可得出结论.
【详解】
解:(1)当时,实际在甲超市的花费为元;
当时,实际在甲超市的花费为元,
实际在乙超市的花费为元.
故答案为:;;.
(2)当时,显然选择甲超市花费更少;
当时,若,
解得:;
若,
解得:;
若,
解得:.
答:当顾客在“中秋节”当天购买该种月饼超过200元不超过400元时,选择甲超市花费更少;当购买该种月饼400元时,选择两家超市花费相同;当购买该种月饼超过400元时,选择乙超市花费更少.
【点睛】
本题考查了一元一次不等式的应用、列代数式以及一元一次方程的应用,解题的关键是:(1)根据各数量之间的关系,用含的代数式表示出各数量;(2)根据各数量之间的关系,正确列出一元一次不等式(或一元一次方程).
4、
【解析】
【分析】
根据解一元一次不等式的一般步骤,去分母,移项,合并同类项,系数化为1,进行计算即可.
【详解】
解:
,
,
.
【点睛】
本题考查了解一元一次不等式,熟知解一元一次不等式的一般方法是解本题的关键.
5、(1);(2),数轴见解析
【解析】
【分析】
(1)直接移项即可解得不等式的解集;
(2)先去分母再去括号,进而求得不等式的解集,并把它的解集在数轴上表示出来
【详解】
(1)x+2<6;
(2)+1≥,
解得
在数轴上表示,如图,
【点睛】
本题考查了解一元一次不等式,在数轴上表示不等式的解集,准确的计算和数形结合是解题的关键.
相关试卷
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时练习,共22页。试卷主要包含了下列命题中,是真命题的是,下列说法中,真命题的个数为,一个角的补角比这个角的余角大.,下列语句中,是命题的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试达标测试,共21页。试卷主要包含了如图,下列条件中能判断直线的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试练习,共18页。试卷主要包含了下列调查中,最适合采用全面调查,有一组数据,一组数据x等内容,欢迎下载使用。

