初中数学北师大版七年级下册第五章 生活中的轴对称综合与测试一课一练
展开
这是一份初中数学北师大版七年级下册第五章 生活中的轴对称综合与测试一课一练,共18页。试卷主要包含了下列图形中,是轴对称图形的是,点P,下列有关绿色等内容,欢迎下载使用。
七年级数学下册第五章生活中的轴对称专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图案,是轴对称图形的为( )A. B.C. D.2、如图所示图形中轴对称图形是( )A. B. C. D.3、下列图形中不是轴对称图形的是( ).A. B. C. D.4、下列图形中,是轴对称图形的是( )A. B.C. D.5、中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术.2006年5月20日,剪纸艺术遗产经国务院批准列入第一批国家级非物质文化遗产名录.2009年9月28日至10月2日举行的联合国教科文组织保护非物质文化遗产政府间委员会第四次会议上,中国申报的中国剪纸项目入选“人类非物质文化遗产代表作名录”.下列四个剪纸图案是轴对称图形的为( )A. B. C. D.6、下列交通标志图案是轴对称图形的是( )A. B.C. D.7、如图.点D,E分别在△ABC的边BC,AB上,连接AD、DE,将△ABC沿直线DE折叠后,点B与点A重合,已知AC=6cm,△ADC的周长为14cm,则线段BC的长为( )A.6cm B.8cm C.12cm D.20cm8、点P( 5,-3 )关于y轴的对称点是 ( )A.(-5, 3 ) B.(-5,-3) C.(5,3 ) D.(5,-3 )9、下列有关绿色、环保主题的四个标志中,是轴对称图形是( )A. B. C. D. 10、第24届冬奥会将于2022年2月4日至20日在北京市和张家口市联合举行.下面是从历届冬奥会的会徽中选取的部分图形,其中是轴对称图形的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,把一张三角形纸片(△ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在AB和AC上,DE∥BC,若∠B=70°,则∠BDF的度数为____.2、如图,直角三角形纸片的两直角边分别为6和8,现将△ABC折叠,使点A与点B重合,折痕为DE,则△CBE的周长是___.3、已知点P(a,3)、Q(﹣2,b)关于x轴对称,则a+b=_____.4、如图,在2×2的方格纸中有一个以格点为顶点的ABC,则与ABC成轴对称且以格点为顶点三角形共有____个.5、如图,将沿、翻折,顶点均落在点O处,且与重合于线段,若,则的度数_____ .三、解答题(5小题,每小题10分,共计50分)1、如图,△ABC中,D为BC上一点,∠C=∠BAD,△ABC的角平分线BE交AD于点F.(1)求证:∠AEF=∠AFE;(2)G为BC上一点,当FE平分∠AFG且∠C=30°时,求∠CGF的度数.2、如图1,在正方形网格中,有5个黑色的小正方形,现要求:移动其中的一个(只能移动一个)小正方形,使5个黑色的小正方形组成一个轴对称图形.(范例:如图1-2所示)请你在图3中画出四个与范例不同且符合要求的图形.3、如图,将各图形补成关于直线l对称的图形.4、如图,在锐角∠AOB的内部有一点P,试在∠AOB的两边上各取一点M,N,使得△PMN的周长最小.(保留作图痕迹)5、在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中是一个格点三角形.请在图1和图2中各画出一个与成轴对称的格点三角形,并画出对称轴. -参考答案-一、单选题1、D【分析】根据轴对称图形的概念对个图形分析判断即可得解.【详解】解:A、此图形不是轴对称图形,不符合题意;B、此图形不是轴对称图形,不合题意;C、此图形是轴对称图形,不合题意;D、此图形是轴对称图形,合题意;故选D.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2、C【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行逐一判断即可【详解】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不符合题意;故选C.【点睛】本题主要考查了轴对称图形的识别,熟知轴对称图形的定义是解题的关键.3、C【分析】根据称轴的定义进行分析即可.【详解】解:A.是轴对称图形,故本选项不符合题意;B.是轴对称图形,故本选项不符合题意;C.不是轴对称图形,故本选项符合题意;D.是轴对称图形,故本选项不符合题意;故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4、A【分析】根据轴对称图形的定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,进行判断即可.【详解】解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意;故选:A.【点睛】本题考查了轴对称图形的识别,熟记定义是解本题的关键.5、A【分析】轴对称图形是指在平面内沿着一条直线折叠,直线两旁的部分能够完全重合的图形,据此判断各个选项即可.【详解】解:根据轴对称图形的定义可得:只有A选项符合轴对称图形的定义,故选:A.【点睛】题目主要考查轴对称图形的识别,理解轴对称图形的定义是解题关键.6、B【详解】解:、不是轴对称图形,故本选项错误,不符合题意;、是轴对称图形,故本选项正确,符合题意;、不是轴对称图形,故本选项错误,不符合题意;、不是轴对称图形,故本选项错误,不符合题意.故选:B.【点睛】本题考查了轴对称图形,解题的关键是掌握轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.7、B【分析】由折叠的性质得出BD=AD,由题意得出AD+DC=BD+DC=BC即可得出答案.【详解】解:∵△ABC沿直线DE折叠后,点B与点A重合,∴BD=AD,∵AC=6cm,△ADC的周长为14cm,∴AD+DC=14-6=8cm,∴BD+DC=BC=8cm,故选:B【点睛】此题主要考查了翻折变换的性质,根据题意得出AD=BD是解题关键.8、B【分析】根据两点关于y轴对称的特征是两点的横坐标互为相反数,纵坐标不变即可求出点的坐标.【详解】解:∵所求点与点P(5,–3)关于y轴对称,∴所求点的横坐标为–5,纵坐标为–3,∴点P(5,–3)关于y轴的对称点是(–5,–3).故选B.【点睛】本题考查两点关于y轴对称的知识;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标相同.9、B【分析】结合轴对称图形的概念进行求解.【详解】解:A、不是轴对称图形,本选项不符合题意;B、是轴对称图形,本选项符合题意;C、不是轴对称图形,本选项不符合题意;D、不是轴对称图形,本选项不符合题意.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10、B【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行逐一判断即可.【详解】解:A、不是轴对称图形,故此选项不符合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项符合题意;故选B.【点睛】本题主要考查了轴对称图形的定义,熟知定义是解题的关键.二、填空题1、40°【分析】利用平行线的性质求出∠ADE=70°,再由折叠的性质推出∠ADE=∠EDF=70°即可解决问题.【详解】解:∵DE∥BC,∴∠ADE=∠B=70°,由折叠的性质可得∠ADE=∠EDF=70°,∴∠BDF=180°﹣∠ADE-∠EDF=40°,故答案为:40°.【点睛】本题综合考查了平行线以及折叠的性质,熟练掌握两性质定理是解答关键.2、14【分析】根据图形翻折变换的性质得出AE=BE,进而可得出△CBE的周长=AC+BC.【详解】解:∵△BDE是△ADE翻折而成,∴AE=BE,∴△CBE的周长=BC+BE+CE=BC+AE+CE=BC+AC,∵角三角形纸片的两直角边长分别为6和8,∴△CBE的周长是14.故答案为:14.【点睛】本题考查的是图形翻折变换的性质,熟知“折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等”的知识是解答此题的关键.3、-5【分析】根据关于x轴对称的点横坐标相同,纵坐标互为相反数即可得出结果.【详解】解:∵点P(a,3)与点Q(﹣2,b)关于x轴对称,∴a=﹣2,b=﹣3,∴a+b=﹣2﹣3=﹣5.故答案为:﹣5.【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,难度适中.4、5【分析】解答此题首先找到△ABC的对称轴,EH、GC、AD,BF等都可以是它的对称轴,然后依据对称找出相应的三角形即可.【详解】解:与△ABC成轴对称且以格点为顶点三角形有△ABG,△CDF,△AEF,△DBH,△BCG共5个,故答案为5.【点睛】本题主要考查轴对称的性质;找着对称轴后画图是正确解答本题的关键.5、47°【分析】由翻折的性质可得∠A=∠DOE,∠B=∠EOF,可得∠DOF=∠A+∠B,由三角形内角和定理可得∠A+B=180°−∠C,即可求∠C的度数.【详解】解:∵将△ABC沿DE,EF翻折,顶点A,B均落在点O处,∴∠A=∠DOE,∠B=∠EOF,∴∠DOF=∠A+∠B∵∠A+∠B+∠C=180°∴∠A+B=180°−∠C∵∠DOF=∠C+∠CDO+∠COF=180°−∠C∴∠C+86°=180°−∠C∴∠C=47°故答案为:47°【点睛】本题考查了翻折的性质,三角形内角和定理,熟练运用三角形内角和定理是本题的关键.三、解答题1、(1)见详解;(2)150°【分析】(1)由角平分线定义得∠ABE=∠CBE,再根据三角形的外角性质得∠AEF=∠AFE;(2)由角平分线定义得∠AFE=∠GFE,进而得∠AEF=∠GFE,由平行线的判定得FG∥AC,再根据平行线的性质求得结果.【详解】解:(1)证明:∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABF+∠BAD=∠CBE+∠C,∵∠AFE=∠ABF+∠BAD,∠AEF=∠CBE+∠C,∴∠AEF=∠AFE;(2)∵FE平分∠AFG,∴∠AFE=∠GFE,∵∠AEF=∠AFE,∴∠AEF=∠GFE,∴FG∥AC,∵∠C=30°,∴∠CGF=180°−∠C=150°.【点睛】本题主要考查了平行线的性质与判定,三角形的外角性质,角平分线的定义,关键是综合应用这些性质解决问题.2、画图见解析【分析】把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,根据定义先确定对称轴,再移动其中一个小正方形即可.【详解】解:如图,【点睛】本题考查的是轴对称图案的设计,确定轴对称图案的对称轴是解本题的关键.3、见解析【分析】根据轴对称图形的性质,先找出各关键点关于直线l的对称点,再顺次连接即可.【详解】解:关于直线l对称的图形如图所示. 【点睛】本题考查作图-轴对称变换,解题的关键是掌握轴对称变换的性质,几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始.4、见详解【分析】作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于M,交OB于N,连接PM,N,△PMN即为所求求作三角形.【详解】解:如图,作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于M,交OB于N,连接PM,PN,△PMN即为所求作三角形.理由:由轴对称的性质得MP=ME,NP=NF,∴△PMN的周长=PM+MN+PN=EM+MN+NF=EF,根据两点之间线段最短,可知此时△PP1P2的周长最短.【点睛】本题考查轴对称﹣最短问题、两点之间线段最短等知识,解题的关键是学会利用对称解决最短问题,属于中考常考题型.5、见解析【分析】根据网格结构分别确定出不同的对称轴,然后作出成轴对称的三角形即可得解;【详解】与成轴对称的格点三角形如图所示:即为所求.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.
相关试卷
这是一份初中数学北师大版七年级下册第五章 生活中的轴对称综合与测试课后复习题,共21页。试卷主要包含了下列标志图案属于轴对称图形的是,下列图案中,不是轴对称图形的为,下列图形中,不是轴对称图形的是等内容,欢迎下载使用。
这是一份初中数学北师大版七年级下册第五章 生活中的轴对称综合与测试课堂检测,共19页。试卷主要包含了下列图案属于轴对称图形的是等内容,欢迎下载使用。
这是一份初中数学北师大版七年级下册第五章 生活中的轴对称综合与测试当堂检测题,共19页。试卷主要包含了下列说法正确的是,下列图形中,属于轴对称图形的是,在平面直角坐标系中,点P等内容,欢迎下载使用。