北师大版七年级下册第五章 生活中的轴对称综合与测试综合训练题
展开
这是一份北师大版七年级下册第五章 生活中的轴对称综合与测试综合训练题,共23页。试卷主要包含了下列图形中,不是轴对称图形的是,下列图案,是轴对称图形的为,下列四个图形分别是节能等内容,欢迎下载使用。
七年级数学下册第五章生活中的轴对称综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列四个图案中是轴对称图形的是( )A. B.C. D.2、如图1,北京2022年冬季奥林匹克运动会会徽(冬梦)主要由会徽图形、文字标志、奥林匹克五环标志三个部分组成,图形主体形似汉字“冬”的书法形态;如图2,冬残奥会会徽(飞跃)主要由会徽图形、文字标志、国际残奥委会标志三部分组成,图形主体形似汉字“飞”的书法字体.以下图案是会徽中的一部分,其中是轴对称图形的为( ).A. B. C. D.3、下列图案中,属于轴对称图形的是( )A. B. C. D.4、下面4个图形中,不是轴对称图形的是( )A. B. C. D.5、如图,AD,BE,CF依次是ABC的高、中线和角平分线,下列表达式中错误的是( )A.AE=CE B.∠ADC=90° C.∠CAD=∠CBE D.∠ACB=2∠ACF6、下列图形中,不一定是轴对称图形的是( )A.直角三角形 B.等腰三角形 C.等边三角形 D.正方形7、下列图形中,不是轴对称图形的是( )A. B. C. D.8、下列图案,是轴对称图形的为( )A. B.C. D.9、下列四个图形分别是节能、节水、绿色食品和低碳标志,其中轴对称图形是( )A. B. C. D.10、以下是四个我国杰出企业代表的标志,其中是轴对称图形的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点D与点D'关于AE对称,∠CED'=60°,则∠AED的度数为____.2、梯形(如图)是有由一张长方形纸折叠而成的,这个梯形的面积是(______).3、已知,如图,,点M,N分别是边OA,OB上的定点,点P,Q分别是边OB,OA上的动点,记,,当最小时,则______.4、如图,长方形纸片ABCD中AD∥BC,AB∥CD,∠A=90°,将纸片沿EF折叠,使顶点C、D分别落在点C'、D'处,C'E交AF于点G.若∠CEF=68°,则么∠GFD'=______°.5、汉字中、日、田等都可看作是轴对称图形,请你再写出一个这样的汉字:______.三、解答题(5小题,每小题10分,共计50分)1、综合与应用:根据下面给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数:点A表示__________,点B表示_______.(2)观察数轴,与点A的距离为4的点表示的数是_________和___________.(3)若将数轴折叠,使得点A与表示的点重合,则点B与数_________表示的点重合.(4)若数轴上M,N两点之间的距离为2020(点M在点N的左侧),且M,N两点经过(3)中的折叠后互相重合,则M、N两点表示的数分别是什么?2、在边长为1个单位长度的小正方形网格中,建立平面直角坐标系,已知点O为坐标原点,点C的坐标为(3,1)(1)写出点A和点B的坐标,并在图中画出与△ABC关于x轴对称的图形△;(2)写出点B1的坐标,连接CB1,则线段CB1的长为 .(直接写出得数)3、如图所示,在平面直角坐标系中,已知A(0,1),B(2,0),C(4,3).(1)求出△ABC的面积为 .(2)画出△ABC关于x轴对称的图形△A1B1C1.(3)已知P为y轴上一点,若△ABP的面积为4,求点P的坐标.4、如图,格点△ABC在网格中的位置如图所示.(1)画出△ABC关于直线MN的对称△A'B'C';(2)若网格中每个小正方形的边长为1,则△A'B'C'的面积为 ;(3)在直线MN上找一点P,使PA+PC最小(不写作法,保留作图痕迹).5、(阅读与理解)折纸,常常能为证明一个命题提供思路和方法,例如,在△ABC中,AB>AC(如图),怎样证明∠C>∠B呢?(分析)把AC沿∠A的角平分线AD翻折,因为AB>AC,所以点C落在AB上的点C’处,即AC=AC’,据以上操作,易证明△ACD≌△AC’D,所以∠AC’D=∠C,又因为∠AC’D>∠B,所以∠C>∠B.(感悟与应用)(1)如图(1),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,试判断AC和AD、BC之间的数量关系,并说明理由;(2)如图(2),在四边形ABCD中,AC平分∠DAB,CD=CB.求证:∠B+∠D=180°. -参考答案-一、单选题1、D【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意; B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意; C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意; D、是轴对称图形,符合题意.故答案为:D.【点睛】本题考查了轴对称图形,解题关键是掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2、B【分析】结合轴对称图形的概念求解即可.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.【详解】解:A.不是轴对称图形,本选项不符合题意;B.是轴对称图形,本选项符合题意;C.不是轴对称图形,本选项不符合题意;D.不是轴对称图形,本选项不符合题意.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3、B【详解】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意;故选:B【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.4、D【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、矩形是轴对称图形,故本选项不符合题意;B、菱形是轴对称图形,故本选项不符合题意;C、正方形是轴对称图形,故本选项不符合题意;D、平行四边形不是轴对称图形,故本选项符合题意.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5、C【分析】根据三角形的高、中线和角平分线的定义(1)三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫做三角形的角平分线;(2)三角形的中线定义:在三角形中,连接一个顶点和它所对边的中点的连线段叫做三角形的中线;(3)三角形的高定义:从三角形一个顶点向它的对边(或对边所在的直线)作垂线,顶点和垂足间的线段叫做三角形的高线,简称为高.求解即可.【详解】解:A、BE是△ABC的中线,所以AE=CE,故本表达式正确;B、AD是△ABC的高,所以∠ADC=90,故本表达式正确;C、由三角形的高、中线和角平分线的定义无法得出∠CAD=∠CBE,故本表达式错误;D、CF是△ABC的角平分线,所以∠ACB=2∠ACF,故本表达式正确.故选:C.【点睛】本题考查了三角形的高、中线和角平分线的定义,是基础题,熟记定义是解题的关键.6、A【分析】根据轴对称图形的概念求解即可.【详解】解:根据轴对称的定义,等腰三角形、等边三角形、正方形一定是轴对称图形,直角三角形不一定是轴对称图形,故选:A.【点睛】本题主要考查了轴对称图形的知识,掌握轴对称图形的概念是解决此类问题的关键.7、A【详解】解:A、不是轴对称图形,故本选项符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意;故选:A【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.8、D【分析】根据轴对称图形的概念对个图形分析判断即可得解.【详解】解:A、此图形不是轴对称图形,不符合题意;B、此图形不是轴对称图形,不合题意;C、此图形是轴对称图形,不合题意;D、此图形是轴对称图形,合题意;故选D.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9、C【分析】由题意依据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时也可以说这个图形关于这条直线(成轴)对称进行分析判断即可.【详解】解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.是轴对称图形,故本选项正确;D.不是轴对称图形,故本选项错误.故选:C.【点睛】本题考查轴对称图形的概念,注意掌握轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时互相重合.10、B【详解】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意;故选:B【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.二、填空题1、60°【分析】由轴对称的性质可得,再根据,求解即可.【详解】解:由对称的性质可得,又∵,∴,故答案为.【点睛】此题考查了轴对称的性质,以及邻补角的性质,解题的关键是掌握轴对称以及邻补角的性质.2、69【分析】通过观察图形可知,这个梯形上底是9cm,下底是(9+5)cm,高是6cm,根据梯形的面积公式:S=(a+b)h÷2,把数据代入公式解答【详解】解:根据折叠可得梯形上底是9cm,下底是(9+5)cm,高是6cm(9+9+5)×6÷2=23×6÷2=138÷2=69()故答案为:69【点睛】此题主要考查梯形面积公式的灵活运用,关键是熟记公式3、60°度【分析】作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA于Q,交OB于P,则MP+PQ+QN最小易知∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,根据三角形的外角的性质和平角的定义即可得到结论.【详解】解:如图,作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA于Q,交OB于P,则MP+PQ+QN最小,∴∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,∴∠QPN=(180°﹣α)=∠AOB+∠MQP=30°+ (180°﹣β),∴180°﹣α=60°+(180°﹣β),∴β﹣α=60°,故答案为:60.【点睛】本题考查轴对称﹣最短路线问题、三角形的内角和定理.三角形的外角的性质等知识,解题的关键是灵活运用轴对称知识作出辅助线解决问题.4、44【分析】根据平行线的性质和翻折不变性解答.【详解】解:∵ADBC,∴∠DFE=180°−∠CEF=180°−68°=112°,∴∠D′FE=112°,∠GFE=180°−112°=68°,∴∠GFD′=112°−68°=44°.故答案为:44.【点睛】本题考查了平行线的性质和翻折不变性,注意观察图形.5、一(答案不唯一)【分析】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此解答即可.【详解】解:由轴对称图形的定义可得:一、二、三、甲、出、本、王、平都是轴对称图形.故答案为:一(答案不唯一).【点睛】此题主要考查了轴对称图形,掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.三、解答题1、(1)1,-2.5;(2)-3,5;(3)0.5;(4)M表示的数为-1011;N表示的数为1009【分析】(1)根据数轴的性质读数,即可得到答案;(2)根据数轴和绝对值的性质计算,即可得到答案;(3)根据数轴的性质计算,即可得到答案;(4)根据数轴和绝对值的性质,结合题意,通过列方程并求解,即可得到答案.【详解】解:(1)根据数轴性质,读数得:A:1;B:-2.5,故答案是:1,-2.5;(2)假设与点A的距离为4的数为:x∵∴或∴或即与点A的距离为4的点表示的数是:5或-3,故答案是:5或-3,(3)∵A点与-3表示的点重合,且A点与-3距离为4∴A点与-3之间的中心点为:-1∴数轴以-1为中心折叠∵折叠后重合的点到点-1的距离相等又∵B点到-1点的距离为: 设和B点重合的点为:x∴∴或(即B点舍去)∴B点与0.5表示的点重合,故答案是:0.5;(4)假设M点表示的数为:x,N点表示的数为:y∵数轴上M、N两点之间的距离为2020(M在N的左侧),且M、N两点经过(3)中折叠后互相重合∴M、N两点到点-1距离为1010假设距离点-1的距离为1010的点为:x∴ ∴或∴或∵M在N的左侧∴M:-1011;N:1009,故答案是:-1011,1009.【点睛】本题考查了绝对值、数轴、一元一次方程的知识;解题的关键是熟练掌握绝对值、数轴、一元一次方程的性质,从而完成求解.2、(1)A(1,3),B(-3,2),见解析;(2)(-3,-2),【分析】(1)根据平面直角坐标系直接写出点A,点B坐标,利用关于x轴对称的点的坐标特征写出点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)写出B1的坐标,运用勾股定理可求出CB1的长.【详解】解:(1)A(1,3),B(-3,2),如图所示;(2)(-3,-2),的长为.故答案为:【点睛】本题主要考查作图—轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.3、(1)4;(2)△A1B1C1为所求作的三角形,画图见详解;(3)点P的坐标为(0,5)或(0,-3).【分析】(1)利用割补法求△ABC面积,S△ABC=S梯形AODC-S△ABO-S△CDB代入计算即可;(2)利用关于x轴对称,横坐标不变,纵坐标变为相反数,先求出A、B、C对称点坐标A1(0,-1),B1(2,0),C1(4,-3).然后描点A1(0,-1),B1(2,0),C1(4,-3).再顺次连结线段A1B1,B1C1.C1A1即可;(3)点P在y轴上,根据三角形面积先求出底AP的长,在分两种情况点P在点A的上方与下方,求出点P的坐标即可.【详解】解:(1)过点C作CD⊥x轴于D,∵A(0,1),B(2,0),C(4,3),∴AO=1,OB=2,OD=4,CD=3,BD=OD-OB=4-2=2,S△ABC=S梯形AODC-S△ABO-S△CDB=,=,=,=4,故答案为4;(2)∵△ABC关于x轴对称的图形△A1B1C1,A(0,1),B(2,0),C(4,3).∴A1(0,-1),B1(2,0),C1(4,-3).描点:A1(0,-1),B1(2,0),C1(4,-3).顺次连结A1B1,B1C1.C1A1.则△A1B1C1为所求作的三角形;(3)点P在y轴上,以AP为底,以OB为高,∴S△ABP=,∴,∴,设点P的坐标为(0,n),当点P在点A下方,1-n=4,解得n=-3,当点P在点A上方, n-1=4,解得n=5,△ABP的面积为4,点P的坐标为(0,5)或(0,-3).【点睛】本题考查割补法求三角形面积,用描点法化轴对称图形方法,根据三角形面积建立AP的方程,利用分类讨论思想求出点P坐标是解题关键.4、(1)见解析;(2)3.5;(3)见解析【分析】(1)依据轴对称的性质,首先确定A、B、C三点的对称点位置,再连接即可;(2)依据割补法进行计算,即可得到△A'B'C'的面积;(3)依据轴对称的性质以及两点之间,线段最短,连接AC′,与MN的交点位置就是点P的位置.【详解】解:(1)如图所示:△A'B'C'即为所求;(2)△A'B'C'的面积:3×3-×1×3-×2×3-×1×2=9-1.5-3-1=3.5;故答案为:3.5;(3)如图,点P即为所求.【点睛】本题主要考查了利用轴对称变换作图,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.5、(1)AC+AD=BC;(2)证明见解答过程;【分析】(1)把AC沿∠ACB的角平分线CD翻折,点A落在BC上的点A′处,连接A′D,根据直角三角形的性质求出∠A,根据三角形的外角性质得到∠A′DB=∠B,根据等腰三角形的判定定理得到A′D=A′B,结合图形计算,证明结论;(2)将AD沿AC翻折,使D落在AB上的D′处,连接CD′,根据全等三角形的性质得到CD=CD′=BC,∠D=∠AD′C,进而证明结论;【详解】(1)解:AC+AD=BC,理由如下:如图,把AC沿∠ACB的角平分线CD翻折,点A落在BC上的点A′处,连接A′D,∵∠ACB=90°,∠B=30°,∴∠A=90°-∠B=60°,由折叠的性质可知,CA′=CA,A′D=AD,∠CA′D=∠A=60°,∵∠B=30°,∴∠A′DB=∠CA′D-∠B=30°,∴∠A′DB=∠B,∴A′D=A′B,∴AD=A′B,∴BC=CA′+A′B=AC+AD;(2)证明:如图,将AD沿AC翻折,使D落在AB上的D′处,连接CD′,则△ADC≌△AD′C,∴CD=CD′=BC,∠D=∠AD′C,∴∠B=∠BD′C,∵∠BD′C+∠AD′C=180°,∴∠B+∠D=180°.【点睛】本题考查的是翻折变换的性质、等腰三角形的性质,掌握翻折变换的性质是解题的关键.
相关试卷
这是一份初中数学北师大版七年级下册第五章 生活中的轴对称综合与测试课后作业题,共21页。试卷主要包含了下列图形中,不是轴对称图形的是等内容,欢迎下载使用。
这是一份2021学年第五章 生活中的轴对称综合与测试随堂练习题,共21页。试卷主要包含了下列各图中不是轴对称图形的是,下列图案属于轴对称图形的是等内容,欢迎下载使用。
这是一份2021学年第五章 生活中的轴对称综合与测试课堂检测,共20页。试卷主要包含了下列图案中,不是轴对称图形的为,下列图形中,是轴对称图形的是,下面四个图形是轴对称图形的是等内容,欢迎下载使用。