江苏省南京市联合体2021-2022学年八年级上学期期末考试数学试卷(Word版含答案)
展开2021—2022学年第一学期期末学情分析样题
八年级数学
注意事项:
1.本试卷共6页.全卷满分100分.考试时间为100分钟.考生答题全部答在答题卡上,答在本试卷上无效.
2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.
3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.
4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.
一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.下面4个图形中,不是轴对称图形的是
2.如图,△ABC≌△DEF,点B、E、C、F在同一直线上,若BC=7,EC=4,则CF的长是
A.2 | B.3 | C.4 | D.7 |
3.点P(-3,1)关于原点对称的点的坐标是
A.(-3,1) | B.(3,1) | C.(3,-1) | D.(-3,-1) |
4.一次函数y=2x-1的图像不经过
A.第一象限 | B.第二象限 | C.第三象限 | D.第四象限 |
5.如图,直角三角形纸片ABC中,∠ACB=90°,∠A=50°,将其沿边AB上的中线CE折叠,使点A落在点A' 处,则∠A'EB的度数为
A.10° | B.15° | C.20° | D.40° |
6.在探究“水沸腾时温度变化特点”的实验中,下表记录了实验中温度和时间变化的数据.
时间分钟 | 0 | 5 | 10 | 15 | 20 | 25 |
温度 | 10 | 25 | 40 | 55 | 70 | 85 |
若温度的变化是均匀的,则18分钟时的温度是
A.62℃ | B.64℃ | C.66℃ | D.68℃ |
7.下列整数中,与-1最接近的是
A.2 | B.3 | C.4 | D.5 |
8.已知一次函数y1=kx+1和y2=x﹣2.当x<1时,y1>y2,则k的值可以是
A.-3 | B.-1 | C.2 | D.4 |
二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)
9.16的平方根是 ▲ ,8的立方根是 ▲ .
10.南京市总面积6 587.02平方公里.用四舍五入法取近似数,6 587.02≈ ▲ (精确到百位).
11.将函数y=3x-4 的图像向上平移5个单位长度,所得图像对应的函数表达式为 ▲ .
12.已知一次函数和的图像交点坐标为(-4,2),则关于、的二元一次方程组的解是 ▲ .
13. 如图,在△ABC中,AB=AC,∠A=36°,点D在AC上,且BD=BC,则∠BDC= ▲ .
14.在平面直角坐标系中,△AOB是等边三角形,点的坐标为(2,0),将△AOB绕原点逆时针旋转,则点A' 的坐标为 ▲ .
15.如图,在四边形ABCD中,AD=CD,AB=CB.下列结论:①BD垂直平分AC;②BD平分∠ADC;③AB∥CD;④△ABD≌△CBD.其中所有正确结论的序号是 ▲ .
16.如图,一次函数与的图像相交于点P(n,-4),则关于的不等式的解集为 ▲ .
17.如图,在△ABC中,AB=20,AC=15,BC=7,则点A到BC的距离是 ▲ .
18.如图,在平面直角坐标系中,一次函数y=-2x+4的图像与x轴、y轴分别交于点A、B将直线AB绕点B顺时针旋转45°,交x轴于点C,则直线BC的函数表达式为 ▲ .
三、解答题(本大题共8小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
19.(6分)
(1)计算:()3+; (2)求的值:.
20.(8分)如图,AB=AD,AC=AE,BC=DE,点E在BC上.
(1)求证:∠EAC=∠BAD;
(2)若∠EAC=42°,求∠DEB的度数.
21.(8分)如图,在平面直角坐标系中,已知点A(1,4),B(4,4),C(2,1).
(1)请在图中画出△ABC;
(2)将△ABC向左平移5个单位,再沿x轴翻折得到△A1B1C1.请在图中画出△A1B1C1;
(3)若△ABC 内有一点P(a,b),则点P经上述平移、翻折后得到的点P1的坐是 ▲ .
22.(8分)已知一次函数的图像经过点A(-1,-2)、B(0,1).
(1)求k、b的值;
(2)画出这个函数的图像;
(3)当x>1时,y的取值范围是___▲___.
23.(7分)如图,在△ABC中,AB=AC,AD⊥BC于点D.
(1)若∠C=42°,求∠BAD的度数;
(2)若点E在边AB上,过点E作EF∥AC,交AD的延长线于点F.求证:AE=FE.
24.(9分)A、B两地相距60km.甲、乙两车从A地出发去B地,乙车的速度是甲车速度的4倍,甲车比乙车早1h出发.甲、乙两车距离A地的路程y(km)与乙车出发的时间x(h)之间的函数关系如图①所示.
(1)甲车的速度是__▲___ km/h;
(2)乙车出发几小时后追上甲车?
(3)设两车之间的距离为s km,甲车行驶的时间为t h,在图②的平面直角坐标系中画出s与t的函数图像(请标出必要的数据).
25.(8分)如图,在△ABC中,∠C=90°,按下列要求用直尺和圆规作图.(不写作法,保留作图痕迹)
(1)如图①,在边BC上求作一点P,使点P到点C的距离等于点P到边AB的距离;
(2)如图②,在边AB上求作一点Q,使点Q到点A的距离等于点Q到边BC的距离.
26.(10分)
【结论证明】
证明:在直角三角形中,30°角所对的直角边是斜边的一半.
已知:如图,在Rt△ABC中,∠ACB=90°,∠A=30°.
求证: ▲ .
证明:
【知识应用】
如图,平面直角坐标系中,∠BAO=30°,点A的坐标为(4,0),C是AO的中点,D为AB上一动点,连接CD,点A关于直线CD的对称点为A'.
(1)当CD⊥AB时,点A'的坐标为 ▲ ;
(2)当CA'⊥AB时,求点A'的坐标.
2021—2022学年第一学期期末学情分析样题
八年级数学试卷参考答案
说明:本评分标准每题给出了一种或几种解法供参考.如果考生的解法与本解答不同,参照本评分标准的精神给分.
一、选择题(本大题共8小题,每小题2分,共16分)
题号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
答案 | D | B | C | B | C | B | A | B |
二、填空题(本大题共10小题,每小题2分,共20分)
9.,2 | 10. | 11. | 12. | 13.72° |
14.(,1) | 15.①②④ | 16.x<2 | 17.12 | 18. |
三、解答题(本大题共8小题,共64分)
19.(本题6分)
(1).
解:原式=-2+2.···················································2分
=0························································3分
(2).
解:x2=3.························································2分
x=.··························································3分
20.(本题8分)
(1)证明:∵AB=AD,AC=AE,BC=DE,
∴△ABC≌△ADE.···············································2分
∴∠BAC=∠DAE.···············································3分
∴∠BAC-∠BAE=∠DAE-∠BAE.
即∠EAC=∠BAD.···············································4分
(2)解:∵AC=AE,∠EAC=42°,
∴∠AEC=∠C=×(180°-∠EAC)=×(180°-42°)=69°.·············6分
∵△ABC≌△ADE,
∴∠AED=∠C=69°,··········································7分
∴∠DEB=180°-∠AED-∠C=180°-69°-69°=42°.·············8分
21.(本题8分)
(1)每个点各1分.··················································3分
(2)每个点各1分.··················································6分
(3)(a-5,-b).················································8分
22.(本题8分)
(1)解:把x=-1,y=-2代入y=kx+b,得-2=-k+b.
把x=0,y=1代入y=kx+b,得1=b.·····································2分
解方程组得·························································4分
(2)图像略.······················································6分
(3).····························································8分
23.(本题7分)
(1)解:∵AB=AC,AD⊥BC于点D,
∴∠BAD=∠CAD,∠ADC=90°,··································2分
又∵∠C=42°,
∴∠BAD=∠CAD=90°-42°=48°.·······························3分
(2)证明:∵EF∥AC,
∴∠F=∠CAD,···················································4分
∵∠BAD=∠CAD,
∴∠BAD=∠F,···················································6分
∴AE=FE.······················································7分
24.(本题9分)
(1)15.····························································2分
(2)甲车速度是15km/h,乙车速度是60km/h,
(h), ·························································4分
乙出发h后追上甲.·················································5分
(3)如图(4段函数图像,每段1分).·····································9分
25.(本题8分)
(1)作∠BAC的角平分线交BC于点P(如图①).···························4分
(2)方法一:作∠BAC的角平分线交BC于点P,过点P作BC的垂线交AB于点Q(如图②);
方法二:作∠BAC的角平分线交BC于点P,作AP的垂直平分线交AB于点Q(如图③);
方法三:过点A作AB的垂线交BC的延长线于点D,再作∠ADC的角平分线交AB于点Q(如图④).······8分
26.(本题10分)
【结论证明】
求证:BC=AB.·····················································1分
(方法一)证明:取AB的中点D,连接CD.
∵∠ACB=90°,D为AB的中点,
∴CD=AB=BD,
∵∠ACB=90°,∠CAB=30°,
∴∠B=90°-30°=60°,
∴△BCD是等边三角形,
∴BC=CD,
∴BC=AB.
(方法二)证明:延长BC到D,使得CD=CB,连接AD.
∵CD=CB,AC⊥BC,
∴AD=AB,
∵∠ACB=90°,∠CAB=30°,
∴∠B=90°-30°=60°,
∴△ABD是等边三角形,
∴AB=BD,
∵DC=BC,
∴BC=AB.························································4分
(1)(1,);…………………………………………………………………………………6分
(2)①如图①,当CA'⊥AB时,延长A'D交AO于点F,
由对称得,∠A'=∠BAO=30°,CA'=CA=2.
∵∠AEC=90°,
∴∠ACE=60°.
∴∠A'FC=90°.
∴CF=CA'=1,OF=OC+CF=3.
∴在Rt△A'CF中,由勾股定理得A'F=,
∴点A'的坐标是(3,).…………………………8分
②如图②,同①理,CF=CA'=1,OF=OC-CF=1.
∴在Rt△A'CF中,由勾股定理得A'F=,
∴点A'的坐标是(1,-).……………………10分
2021-2022 学年江苏省南京市联合体九年级(上)期中数学试卷: 这是一份2021-2022 学年江苏省南京市联合体九年级(上)期中数学试卷,共6页。
江苏省南京市联合体2021-2022学年七年级上学期期末考试数学试卷: 这是一份江苏省南京市联合体2021-2022学年七年级上学期期末考试数学试卷,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2021-2022学年江苏省南京市联合体八年级(下)期末数学试卷(含解析): 这是一份2021-2022学年江苏省南京市联合体八年级(下)期末数学试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。