江苏省南京市联合体2021-2022学年八年级上学期期末考试数学试卷(Word版含答案)
展开
这是一份江苏省南京市联合体2021-2022学年八年级上学期期末考试数学试卷(Word版含答案),共11页。试卷主要包含了本试卷共6页等内容,欢迎下载使用。
2021—2022学年第一学期期末学情分析样题八年级数学注意事项:1.本试卷共6页.全卷满分100分.考试时间为100分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚. 一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下面4个图形中,不是轴对称图形的是 2.如图,△ABC≌△DEF,点B、E、C、F在同一直线上,若BC=7,EC=4,则CF的长是A.2B.3C.4D.73.点P(-3,1)关于原点对称的点的坐标是A.(-3,1)B.(3,1)C.(3,-1)D.(-3,-1)4.一次函数y=2x-1的图像不经过A.第一象限B.第二象限C.第三象限D.第四象限 5.如图,直角三角形纸片ABC中,∠ACB=90°,∠A=50°,将其沿边AB上的中线CE折叠,使点A落在点A' 处,则∠A'EB的度数为A.10°B.15°C.20°D.40° 6.在探究“水沸腾时温度变化特点”的实验中,下表记录了实验中温度和时间变化的数据.时间分钟0510152025温度102540557085若温度的变化是均匀的,则18分钟时的温度是A.62℃B.64℃C.66℃D.68℃7.下列整数中,与-1最接近的是A.2B.3C.4D.58.已知一次函数y1=kx+1和y2=x﹣2.当x<1时,y1>y2,则k的值可以是A.-3B.-1C.2D.4二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.16的平方根是 ▲ ,8的立方根是 ▲ .10.南京市总面积6 587.02平方公里.用四舍五入法取近似数,6 587.02≈ ▲ (精确到百位).11.将函数y=3x-4 的图像向上平移5个单位长度,所得图像对应的函数表达式为 ▲ .12.已知一次函数和的图像交点坐标为(-4,2),则关于、的二元一次方程组的解是 ▲ .13. 如图,在△ABC中,AB=AC,∠A=36°,点D在AC上,且BD=BC,则∠BDC= ▲ .14.在平面直角坐标系中,△AOB是等边三角形,点的坐标为(2,0),将△AOB绕原点逆时针旋转,则点A' 的坐标为 ▲ .15.如图,在四边形ABCD中,AD=CD,AB=CB.下列结论:①BD垂直平分AC;②BD平分∠ADC;③AB∥CD;④△ABD≌△CBD.其中所有正确结论的序号是 ▲ .16.如图,一次函数与的图像相交于点P(n,-4),则关于的不等式的解集为 ▲ .17.如图,在△ABC中,AB=20,AC=15,BC=7,则点A到BC的距离是 ▲ .18.如图,在平面直角坐标系中,一次函数y=-2x+4的图像与x轴、y轴分别交于点A、B将直线AB绕点B顺时针旋转45°,交x轴于点C,则直线BC的函数表达式为 ▲ . 三、解答题(本大题共8小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(6分)(1)计算:()3+; (2)求的值:. 20.(8分)如图,AB=AD,AC=AE,BC=DE,点E在BC上.(1)求证:∠EAC=∠BAD;(2)若∠EAC=42°,求∠DEB的度数. 21.(8分)如图,在平面直角坐标系中,已知点A(1,4),B(4,4),C(2,1).(1)请在图中画出△ABC;(2)将△ABC向左平移5个单位,再沿x轴翻折得到△A1B1C1.请在图中画出△A1B1C1;(3)若△ABC 内有一点P(a,b),则点P经上述平移、翻折后得到的点P1的坐是 ▲ . 22.(8分)已知一次函数的图像经过点A(-1,-2)、B(0,1).(1)求k、b的值;(2)画出这个函数的图像;(3)当x>1时,y的取值范围是___▲___. 23.(7分)如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,过点E作EF∥AC,交AD的延长线于点F.求证:AE=FE.24.(9分)A、B两地相距60km.甲、乙两车从A地出发去B地,乙车的速度是甲车速度的4倍,甲车比乙车早1h出发.甲、乙两车距离A地的路程y(km)与乙车出发的时间x(h)之间的函数关系如图①所示.(1)甲车的速度是__▲___ km/h;(2)乙车出发几小时后追上甲车? (3)设两车之间的距离为s km,甲车行驶的时间为t h,在图②的平面直角坐标系中画出s与t的函数图像(请标出必要的数据).25.(8分)如图,在△ABC中,∠C=90°,按下列要求用直尺和圆规作图.(不写作法,保留作图痕迹)(1)如图①,在边BC上求作一点P,使点P到点C的距离等于点P到边AB的距离;(2)如图②,在边AB上求作一点Q,使点Q到点A的距离等于点Q到边BC的距离. 26.(10分)【结论证明】证明:在直角三角形中,30°角所对的直角边是斜边的一半.已知:如图,在Rt△ABC中,∠ACB=90°,∠A=30°.求证: ▲ .证明: 【知识应用】如图,平面直角坐标系中,∠BAO=30°,点A的坐标为(4,0),C是AO的中点,D为AB上一动点,连接CD,点A关于直线CD的对称点为A'.(1)当CD⊥AB时,点A'的坐标为 ▲ ;(2)当CA'⊥AB时,求点A'的坐标. 2021—2022学年第一学期期末学情分析样题八年级数学试卷参考答案 说明:本评分标准每题给出了一种或几种解法供参考.如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共8小题,每小题2分,共16分)题号12345678答案DBCBCBAB二、填空题(本大题共10小题,每小题2分,共20分)9.,210.11.12.13.72°14.(,1)15.①②④16.x<217.1218.三、解答题(本大题共8小题,共64分)19.(本题6分)(1).解:原式=-2+2.···················································2分=0························································3分(2).解:x2=3.························································2分x=.··························································3分 20.(本题8分)(1)证明:∵AB=AD,AC=AE,BC=DE,∴△ABC≌△ADE.···············································2分∴∠BAC=∠DAE.···············································3分∴∠BAC-∠BAE=∠DAE-∠BAE.即∠EAC=∠BAD.···············································4分(2)解:∵AC=AE,∠EAC=42°,∴∠AEC=∠C=×(180°-∠EAC)=×(180°-42°)=69°.·············6分∵△ABC≌△ADE,∴∠AED=∠C=69°,··········································7分∴∠DEB=180°-∠AED-∠C=180°-69°-69°=42°.·············8分 21.(本题8分)(1)每个点各1分.··················································3分(2)每个点各1分.··················································6分(3)(a-5,-b).················································8分 22.(本题8分)(1)解:把x=-1,y=-2代入y=kx+b,得-2=-k+b.把x=0,y=1代入y=kx+b,得1=b.·····································2分解方程组得·························································4分(2)图像略.······················································6分(3).····························································8分23.(本题7分)(1)解:∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,∠ADC=90°,··································2分又∵∠C=42°,∴∠BAD=∠CAD=90°-42°=48°.·······························3分(2)证明:∵EF∥AC,∴∠F=∠CAD,···················································4分∵∠BAD=∠CAD,∴∠BAD=∠F,···················································6分∴AE=FE.······················································7分24.(本题9分)(1)15.····························································2分(2)甲车速度是15km/h,乙车速度是60km/h,(h), ·························································4分乙出发h后追上甲.·················································5分(3)如图(4段函数图像,每段1分).·····································9分 25.(本题8分)(1)作∠BAC的角平分线交BC于点P(如图①).···························4分(2)方法一:作∠BAC的角平分线交BC于点P,过点P作BC的垂线交AB于点Q(如图②);方法二:作∠BAC的角平分线交BC于点P,作AP的垂直平分线交AB于点Q(如图③);方法三:过点A作AB的垂线交BC的延长线于点D,再作∠ADC的角平分线交AB于点Q(如图④).······8分26.(本题10分)【结论证明】求证:BC=AB.·····················································1分(方法一)证明:取AB的中点D,连接CD. ∵∠ACB=90°,D为AB的中点,∴CD=AB=BD,∵∠ACB=90°,∠CAB=30°,∴∠B=90°-30°=60°,∴△BCD是等边三角形,∴BC=CD,∴BC=AB.(方法二)证明:延长BC到D,使得CD=CB,连接AD. ∵CD=CB,AC⊥BC,∴AD=AB,∵∠ACB=90°,∠CAB=30°,∴∠B=90°-30°=60°,∴△ABD是等边三角形,∴AB=BD,∵DC=BC,∴BC=AB.························································4分(1)(1,);…………………………………………………………………………………6分(2)①如图①,当CA'⊥AB时,延长A'D交AO于点F,由对称得,∠A'=∠BAO=30°,CA'=CA=2.∵∠AEC=90°,∴∠ACE=60°.∴∠A'FC=90°.∴CF=CA'=1,OF=OC+CF=3.∴在Rt△A'CF中,由勾股定理得A'F=,∴点A'的坐标是(3,).…………………………8分②如图②,同①理,CF=CA'=1,OF=OC-CF=1.∴在Rt△A'CF中,由勾股定理得A'F=,∴点A'的坐标是(1,-).……………………10分
相关试卷
这是一份2021-2022 学年江苏省南京市联合体九年级(上)期中数学试卷,共6页。
这是一份江苏省南京市联合体2021-2022学年七年级上学期期末考试数学试卷,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2021-2022学年江苏省南京市联合体八年级(下)期末数学试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。