数学6.2 平行四边形的判定精品练习
展开2022年青岛版数学八年级下册
6.2《平行四边形的判定》课时练习
一、选择题
1.在四边形ABCD中,AC,BD交于点O,且OA=OC,OB=OD,则下列结论不一定成立的是( )
A.AB∥CD B.BC∥AD C.AB=AD D.BC=AD
2.在四边形ABCD中,AC与BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是( )
A.AB∥DC,AB=DC B.AB=DC,AD=BC
C.AB∥DC,AD=BC D.OA=OC,OB=OD
3.不能判定四边形ABCD为平行四边形的题设是( )
A.AB平行且等于CD B.∠A=∠C,∠B=∠D
C.AB=AD,BC=CD D.AB=CD,AD=BC
4.下列条件中不能判断四边形是平行四边形的是( )
A.两组对边分别相等
B.一组对边平行且相等
C.对角线相等
D.两组对角分别相等
5.在四边形ABCD中,对角线AC,BD相交于点O,∠A=∠C,添加下列一个条件后,能判定四边形ABCD是平行四边形的是( )
A.∠A=∠B B.∠C=∠D C.∠B=∠D D.AB=CD
6.如图,平行四边形ABCD中,对角线AC、BD相交于点O,E、F是AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )
A.∠ADE=∠CBF B.∠ABE=∠CDF C.DE=BF D.OE=OF
7.如图,平行四边形ABCD中,DE⊥AB于E,DF⊥BC于F,若□ABCD的周长为48,DE=5,DF=10,则□ABCD的面积等于( )
A.87.5 B.80 C.75 D.72.5
8.如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动.当四边形PQBC为平行四边形时,运动时间为( )
A.4s B.3s C.2s D.1s
二、填空题
9.如图,E,F是▱ABCD对角线BD上的两点,请你添加一个适当的条件: ,使四边形AECF是平行四边形.
10.在四边形ABCD中,BD是对角线,∠ABD=∠CDB,要使四边形ABCD是平行四边形只须添加一个条件,这个条件可以是 (只需写出一种情况).
11.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:
①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.
其中一定能判定这个四边形是平行四边形的条件有_____(添序列号即可).
12.如图,加一个条件 与∠A+∠B=180°能使四边形ABCD成为平行四边形.
13.如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,S△BPG=1,则S▱AEPH=___.
14.如图,在平行四边形ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于点M、N.
给出下列结论:①△ABM≌△CDN;②3AM=AC;③DN=2NF;④2S△AMB=S△ABC.
其中正确的结论是_______________(只填番号)
三、解答题
15.如图,四边形ABCD是平行四边形纸片,翻折∠B,∠D,使BC,AD恰好落在AC上.设F,H分别是B,D落在AC上的两点,E,G分别是折痕CE,AG与AB,CD的交点.
求证:四边形AECG是平行四边形.
16.如图,已知在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.
求证:四边形ABCD为平行四边形.
17.如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB⊥BD.
(1)求证:△AED≌△CFB;
(2)若∠A=30°,∠DEB=45°,求证:DA=DF.
18.如图,△ABC和△ADE都是等边三角形,点D在BC边上,AB边上有一点F,且BF=DC,连接EF、EB。
(1)求证:△ABE≌△ACD;
(2)求证:四边形EFCD是平行四边形。
参考答案
1.答案为:C
2.答案为:C
3.答案为:C
4.答案为:C
5.答案为:C
6.答案为:C
7.答案为:B
8.答案为:B
9.答案为:BE=DF或BF=DE或∠BAE=∠DCF
10.答案为:AB=CD或AD∥BC
11.答案为:①②③.
12.答案为AD=BC或AB∥CD.
13.答案为:4.
14.答案为:①②③
15.证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,∴∠DAC=∠BCA.
由折叠的性质可得∠GAC=0.5∠DAC,∠ECA=0.5∠BCA,
∴∠GAC=∠ECA,
∴AG∥CE.又∵AE∥CG,
∴四边形AECG是平行四边形.
16.证明:∵AB∥CD,
∴∠DCA=∠BAC,
∵DF∥BE,
∴∠DFA=∠BEC,∴∠AEB=∠DFC,
在△AEB和△CFD中
,
∴△AEB≌△CFD(ASA),
∴AB=CD,
∵AB∥CD,
∴四边形ABCD为平行四边形.
17.证明:(1)∵四边形ABCD是平行四边形,
∴AD=CB,∠A=∠C,AD∥CB,AB∥CD,
∴∠ADB=∠CBD,
∵ED⊥DB,FB⊥BD,
∴∠EDB=∠FBD=90°,
∴∠ADE=∠CBF,
在△AED和△CFB中,∠ADE=∠CBF,AD=BC,∠A=∠C,
∴△AED≌△CFB(ASA);
(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,
∴AD=2DH,
在Rt△DEB中,∠DEB=45°,
∴EB=2DH,
∵ED⊥DB,FB⊥BD.
∴DE∥BF,
∵AB∥CD,
∴四边形EBFD为平行四边形,
∴FD=EB,∴DA=DF.
18.解:(1)∵△ABC和△ADE都是等边三角形,
∴AE=AD,AB=AC,∠EAD=∠BAC=60°,
∴∠EAD-∠BAD=∠BAC-∠BAD,即:∠EAB=∠DAC,
∴△ABE≌△ACD(SAS);
(2)证明:∵△ABE≌△ACD,∴BE=DC,∠EBA=∠DCA,
又∵BF=DC,∴BE=BF.
∵△ABC是等边三角形,∴∠DCA=60°,
∴△BEF为等边三角形.∴∠EFB=60°,EF=BF
∵△ABC是等边三角形,∴∠ABC=60°,
∴∠ABC=∠EFB,∴EF∥BC,即EF∥DC,
∵EF=BF,BF=DC,∴EF=DC,
∴四边形EFCD是平行四边形。
青岛版八年级下册6.2 平行四边形的判定优秀随堂练习题: 这是一份青岛版八年级下册6.2 平行四边形的判定优秀随堂练习题,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中北师大版2 平行四边形的判定优秀课时练习: 这是一份初中北师大版2 平行四边形的判定优秀课时练习,共7页。试卷主要包含了2《平行四边形的判定》等内容,欢迎下载使用。
初中第6章 平行四边形6.2 平行四边形的判定练习: 这是一份初中第6章 平行四边形6.2 平行四边形的判定练习,共14页。试卷主要包含了0分),【答案】D,【答案】C等内容,欢迎下载使用。