数学选修2-21.3导数在研究函数中的应用课后测评
展开课题:导数的应用
教学目标:理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值.
(一) 主要知识及主要方法:
利用导数研究多项式函数单调性的一般步骤:
求;确定在内符号;若在上恒成立,则在上是增函数;若在上恒成立,则在上是减函数
①为增函数(为减函数).
②在区间上是增函数≥在上恒成立;
在区间上为减函数≤在上恒成立.
极大值: 一般地,设函数在点附近有定义,如果对附近的所有的点,都有,就说是函数的一个极大值,记作极大值,是极大值点.
极小值:一般地,设函数在附近有定义,如果对附近的所有的点,都有就说是函数的一个极小值,记作极小值,是极小值点.
极大值与极小值统称为极值
在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请注意以下几点:
()极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小.
()函数的极值不是唯一的即一个函数在某区间上或定义域内极xs大值或极小值可以不止一个.
()极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,是极大值点,是极小值点,而>.
()函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.
当在点连续时,判别是极大、极小值的方法:
若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是极小值.
求可导函数的极值的步骤:
确定函数的定义区间,求导数求方程的根
用函数的导数为的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查在方程根左右的值的符号,如果左正右负,那么在这个根处取得极大值;如果左负右正,那么在这个根处取得极小值;如果左右不改变符号,那么在这个根处无极值.如果函数在某些点处连续但不可导,也需要考虑这些点是否是极值点 .
函数的最大值和最小值: 一般地,在闭区间上连续的函数在上必有最大值与最小值.
说明:在开区间内连续的函数不一定有最大值与最小值.如函数在内连续,但没有最大值与最小值;
函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.
函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件.
函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个.
利用导数求函数的最值步骤:
由上面函数的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.
设函数在上连续,在内可导,则求在上的最大值与最小值的步骤如下:求在内的极值;
将的各极值与、比较得出函数在上的最值p
求参数范围的方法:①分离变量法;②构造(差)函数法.
构造函数法是证明不等式的常用方法:构造时要注意四变原则:变具体为抽象,变常量为变量,变主元为辅元,变分式为整式.
通过求导求函数不等式的基本思路是:以导函数和不等式为基础,单调性为主线,最(极值)为助手,从数形结合、分类讨论等多视角进行综合探索.
(二)典例分析:
问题1.(届云南平远一中五模)函数在定义域内可导,其图象如图所示,记的导函数为,则不等式的解集为
已知,的反函数为,则
(大连一模)设均是定义在上的奇函数,当时,
,且,则不等式的解集是
问题2.如果函数在区间上单调递增,并且方程的根都在区间内,则的取值范围为
(届高三浙江上虞市调研)已知,那么
在区间上单调递增 在上单调递增
在上单调递增 在上单调递增
函数,
(Ⅰ)求的单调区间和极值;
(Ⅱ)若关于的方程有个不同实根,求实数的取值范围.
(Ⅲ)已知当时,≥恒成立,求实数的取值范围.
问题3.(天津)已知函数,其中.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,求函数的单调区间与极值.
问题4.(湖北)已知定义在正实数集上的函数,,其中.设两曲线,有公共点,且在该点处的切线相同.(Ⅰ)用表示,并求的最大值;(Ⅱ)求证:≥().
问题5.利用导数求和:
(, ).
().
(三)课后作业:
已知函数,则方程在区间上的根有
个 个 个 个
(郑州一中等四校联考)若函数在上可导且满足不等式
恒成立,且常数满足,则下列不等式一定成立的是
求满足条件的的范围:
使为上增函数,则的范围是
使为上增函数,则的范围是
使为上增函数,则的范围是
证明方程在上至多有一实根.
(届高三陕师大附中八模)如果是二次函数, 且的图象开口向上,
顶点坐标为, 那么曲线上任一点的切线的倾斜角的取值范围是
(届厦门双十中学高三月考)如图,是函数
的大致图像,则等于
(天津)函数的定义域是开区间,
导函数在内的图象如图所示,则函数
在开区间内有极小值点
个 个 个 个
(届高三哈尔滨第三中学第一次月考)
函数的图象如图所示,
且,则有
已知:,证明不等式:
设恰有三个单调区间,试确定的取值范围,并求出这三个单调区间
(届高三福建质检)已知函数在处取得极值.求实数的值;若关于的方程 在区间上恰有两个不同的实数根,求实数的取值范围;证明:对任意的正整数,不等式都成立.
(四)走向高考:
(陕西)是定义在上的非负可导函数,且满足≤.
对任意正数,若,则必有
≤ ≤ ≤ ≤
(江苏)已知二次函数的导数为,,对于任意实数,有≥,则的最小值为
(全国)函数在下面哪个区间内是增函数
(重庆)曲线在点处的切线与轴、直线所围成的三角形的面积为,则
(全国)已知是正整数且,求证:
(重庆)已知函数在处取得极值,其中为常数.(Ⅰ)试确定的值;(Ⅱ)讨论函数的单调区间;
(Ⅲ)若对任意,不等式恒成立,求的取值范围.
[
(海南)设函数
(Ⅰ)若当时,取得极值,求的值,并讨论的单调性;
(Ⅱ)若存在极值,求的取值范围,并证明所有极值之和大于.
(全国Ⅰ)设函数.
(Ⅰ)证明:的导数;
(Ⅱ)若对所有都有,求的取值范围.
(全国Ⅱ文)若函数在区间内为减函数,在区间内为增函数,试求实数的取值范围.
人教版新课标A4.1 圆的方程同步训练题: 这是一份人教版新课标A4.1 圆的方程同步训练题,共7页。试卷主要包含了特殊地,的参数方程为等内容,欢迎下载使用。
高中数学人教版新课标A必修23.2 直线的方程同步训练题: 这是一份高中数学人教版新课标A必修23.2 直线的方程同步训练题,共6页。试卷主要包含了 已知两点,等内容,欢迎下载使用。
高中数学人教版新课标A必修5第二章 数列综合与测试课堂检测: 这是一份高中数学人教版新课标A必修5第二章 数列综合与测试课堂检测,共6页。试卷主要包含了求下列数列的极限,等于,若,求和的值;,已知数列满足,,,… ,,如图,连结的各边中点等内容,欢迎下载使用。