高中数学人教版新课标B必修21.2.3空间中的垂直关系一课一练
展开这是一份高中数学人教版新课标B必修21.2.3空间中的垂直关系一课一练,共5页。
1.PA垂直于正方形ABCD所在平面,连结PB,PC,PD,AC,BD,则下列垂直关系正确的是( )
①面PAB⊥面PBC ②面PAB⊥面PAD
③面PAB⊥面PCD ④面PAB⊥面PAC
A.①② B.①③
C.②③ D.②④
解析:选A.易证BC⊥平面PAB,
则平面PAB⊥平面PBC;
又AD∥BC,
故AD⊥平面PAB,
则平面PAD⊥平面PAB,
因此选A.
2.设a、b、c表示三条直线,α、β表示两个平面,则下列命题的逆命题不成立的是( )
A.c⊥α,若c⊥β,则α∥β
B.b⊂α,c⊄α,若c∥α,则b∥c
C.b⊂β,若b⊥α,则β⊥α
D.b⊂β,c是a在β内的射影,若b⊥c,则b⊥a
解析:选C.C选项的逆命题为b⊂β,若β⊥α则b⊥α.不正确,因为根据平面垂直的性质定理,如果两个平面垂直,其中一个平面内的直线只有垂直于交线的才垂直另一个平面.故选C.
3.若l、m、n是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是( )
A.若α∥β,l⊂α,n⊂β,则l∥n
B.若α⊥β,l⊂α,则l⊥β
C.若l⊥n,m⊥n,则l∥m
D.若l⊥α,l∥β,则α⊥β
解析:选D.选项A中,l除平行n外,还有异面的位置关系,则A不正确.选项B中,l与β的位置关系有相交、平行、在β内三种,则B不正确.选项C中,l与m的位置关系还有相交和异面,故C不正确.故选D.
4.已知a、b是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:
①若a⊥α,a⊥β,则α∥β;
②若α⊥γ,β⊥γ,则α∥β;
③若α∥β,a⊂α,b⊂β,则a∥b;
④若α∥β,α∩γ=a,β∩γ=b,则a∥b.
其中正确命题的序号有________.
解析:垂直于同一直线的两平面平行,①正确;α⊥β也成立,②错;a、b也可异面,③错;由面面平行性质知,a∥b,④正确.
答案:①④
5.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足__________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)
解析:由定理可知,BD⊥PC.
∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,
而PC⊂平面PCD,∴平面MBD⊥平面PCD.
答案:DM⊥PC(或BM⊥PC等)
6.如图,在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD的中点,求证:
(1)直线EF∥平面ACD;
(2)平面EFC⊥平面BCD.
证明:(1)在△ABD中,因为E、F分别是AB、BD的中点,
所以EF∥AD.
又AD⊂平面ACD,EF⊄平面ACD,
所以直线EF∥平面ACD.
(2)在△ABD中,因为AD⊥BD,
EF∥AD,所以EF⊥BD.
在△BCD中,因为CD=CB,F为BD的中点,
所以CF⊥BD.
因为EF⊂平面EFC,CF⊂平面EFC,
EF与CF交于点F,
所以BD⊥平面EFC.
又因为BD⊂平面BCD,
所以平面EFC⊥平面BCD.
练习
1.若m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中为真命题的是( )
A.若m⊂β,α⊥β,则m⊥α
B.若α∩γ=m,β∩γ=n,m∥n,则α∥β
C.若α⊥γ,α⊥β,则β∥γ
D.若m⊥β,m∥α,则α⊥β
解析:选D.对于选项D,若m∥α,则过直线m的平面与平面α相交得交线n,由线面平行的性质定理可得m∥n,又m⊥β,故n⊥β,且n⊂α,故由面面垂直的判定定理可得α⊥β.
2.设a、b是不同的直线,α、β是不同的平面,则下列四个命题中正确的是( )
A.若a⊥b,a⊥α,则b∥α
B.若a∥α,α⊥β,则a⊥β
C.若a⊥β,α⊥β,则a∥α
D.若a⊥b,a⊥α,b⊥β,则α⊥β
解析:选D.A中,b可能在α 内;B中,a可能在β内,也可能与β平行或相交(不垂直);C中,a可能在α内;D中,a⊥b,a⊥α,则b⊂α或b∥α,又b⊥β,∴α⊥β.
3.如图,在斜三棱柱ABC—A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在( )
A.直线AB上
B.直线BC上
C.直线AC上
D.△ABC内部
解析:选A.∵BA⊥AC,BC1⊥AC,BA∩BC1=B,
∴AC⊥平面ABC1.
∵AC⊂平面ABC,∴平面ABC⊥平面ABC1,且交线是AB.故平面ABC1上一点C1在底面ABC的射影H必在交线AB上.
4.如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB中点,PM垂直于△ABC所在平面,那么( )
A.PA=PB>PC
B.PA=PB
D.PA≠PB≠PC
解析:选C.∵M是Rt△ABC斜边AB的中点,
∴MA=MB=MC.
又∵PM⊥平面ABC,∴MA、MB、MC分别是PA、PB、PC在平面ABC上的射影.∴PA=PB=PC.应选C.
5.在二面角α-l-β的两个面α,β内,分别有直线a,b,它们与棱l都不垂直,则( )
A.当该二面角是直二面角时,可能a∥b,也可能a⊥b
B.当该二面角是直二面角时,可能a∥b,但不可能a⊥b
C.当该二面角不是直二面角时,可能a∥b,但不可能a⊥b
D.当该二面角不是直二面角时,不可能a∥b,也不可能a⊥b
解析:选B.当该二面角为直二面角时(如图),若a⊥b,∵b与l不垂直,在b上取点A,过A作AB⊥l,AB∩b=A,
由eq \b\lc\ \rc\}(\a\vs4\al\c1(a⊥b,AB⊥α,a⊂α))⇒eq \b\lc\ \rc\}(\a\vs4\al\c1(b⊥a,AB⊥a,AB⊂β))⇒a⊥β⇒a⊥l.
这和a与l不垂直相矛盾.
∴不可能a⊥b.故A错误,
∴B正确.
6.在正四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,下面四个结论中不成立的是( )
A.BC∥平面PDF
B.DF⊥平面PAE
C.平面PDF⊥平面ABC
D.平面PAE⊥平面ABC
解析:选C.
如图,∵BC∥DF,
∴BC∥平面PDF.∴A正确.
由题设知BC⊥PE,BC⊥AE,
∴BC⊥平面PAE.
∴DF⊥平面PAE.∴B正确.
∴平面ABC⊥平面PAE(BC⊥平面PAE).∴D正确.
7.已知m,n是直线,α、β、γ是平面,给出下列命题:
①α⊥γ,β⊥γ,则α∥β;
②若n⊥α,n⊥β,则α∥β;
③若n⊄α,m⊄α且n∥β,m∥β,则α∥β;
④若m,n为异面直线,n⊂α,n∥β,m⊂β,m∥α,则α∥β.
则其中正确的命题是_______.(把你认为正确的命题序号都填上)
解析:依题意可构造正方体ABCD-A1B1C1D1,如图所示,在正方体中逐一判断各命题易得正确的命题是②④.
答案:②④
8.在正四棱锥P-ABCD中,PA=eq \f(\r(3),2)AB,M是BC的中点,G是△PAD的重心,则在平面PAD中经过G点且与直线PM垂直的直线有________条.
解析:设正四棱锥的底面边长为a,则侧棱长为eq \f(\r(3),2)a.
由PM⊥BC,
∴PM= eq \r((\f(\r(3),2)a)2-(\f(a,2))2)=eq \f(\r(2),2)a.
连结PG并延长与AD相交于N点,
则PN=eq \f(\r(2),2)a,MN=AB=a,
∴PM2+PN2=MN2,
∴PM⊥PN,又PM⊥AD,
∴PM⊥面PAD,
∴在平面PAD中经过G点的任意一条直线都与PM垂直.
答案:无数
9.如图所示,正方体ABCD-A1B1C1D1的棱长是1,过A点作平面A1BD的垂线,垂足为点H,有下列三个命题:
①点H是△A1BD的中心;
②AH垂直于平面CB1D1;
③AC1与B1C所成的角是90°.
其中正确命题的序号是 .
解析:由于ABCD-A1B1C1D1是正方体,所以A-A1BD是一个正三棱锥,因此A点在平面A1BD上的射影H是三角形A1BD的中心,故①正确;又因为平面CB1D1与平面A1BD平行,所以AH⊥平面CB1D1,故②正确;从而可得AC1⊥平面CB1D1,即AC1与B1C垂直,所成的角等于90°.
答案:①②③
10.(2010年南京模拟)如图,已知矩形ABCD中,AB=10,BC=6,沿矩形的对角线BD把△ABD折起,使A移到A1点,且A1在平面BCD上的射影O恰好在CD上.
求证:(1)BC⊥A1D;
(2)平面A1BC⊥平面A1BD.
证明:(1)由于A1在平面BCD上的射影O在CD上,
则A1O⊥平面BCD,又BC⊂平面BCD,
则BC⊥A1O,
又BC⊥CO,A1O∩CO=O,
则BC⊥平面A1CD,又A1D⊂平面A1CD,
故BC⊥A1D.
(2)因为ABCD为矩形,所以A1B⊥A1D.
由(1)知BC⊥A1D,A1B∩BC=B,则A1D⊥平面A1BC,又A1D⊂平面A1BD.
从而有平面A1BC⊥平面A1BD.
11.如图所示,△ABC是正三角形,AE和CD都垂直于平面ABC,且AE=AB=2a,CD=a,F是BE的中点.
(1)求证:DF∥平面ABC;
(2)求证:AF⊥BD.
证明:(1)取AB的中点G,连结FG,可得FG∥AE,FG=eq \f(1,2)AE,
又CD⊥平面ABC,AE⊥平面ABC,
∴CD∥AE,CD=eq \f(1,2)AE,
∴FG∥CD,FG=CD,
∵FG⊥平面ABC,
∴四边形CDFG是矩形,DF∥CG,
CG⊂平面ABC,DF⊄平面ABC,
∴DF∥平面ABC.
(2)Rt△ABE中,AE=2a,AB=2a,
F为BE中点,∴AF⊥BE,
∵△ABC是正三角形,∴CG⊥AB,
∴DF⊥AB,
又DF⊥FG,
∴DF⊥平面ABE,DF⊥AF,
∴AF⊥平面BDF,∴AF⊥BD.
12.如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.
(1)求证:B1D1∥面A1BD;
(2)求证:MD⊥AC;
(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.
解:(1)证明:由直四棱柱,得BB1∥DD1且BB1=DD1,所以BB1D1D是平行四边形,
所以B1D1∥BD.
而BD⊂平面A1BD,B1D1⊄平面A1BD,
所以B1D1∥平面A1BD.
(2)证明:因为BB1⊥面ABCD,AC⊂面ABCD,所以BB1⊥AC,
又因为BD⊥AC,且BD∩BB1=B,
所以AC⊥面BB1D,
而MD⊂面BB1D,所以MD⊥AC.
(3)当点M为棱BB1的中点时,平面DMC1⊥平面CC1D1D
取DC的中点N,D1C1的中点N1,连结NN1交DC1于O,连结OM.
因为N是DC中点,BD=BC,所以BN⊥DC;又因为DC是面ABCD与面DCC1D1的交线,而面ABCD⊥面DCC1D1,
所以BN⊥面DCC1D1.
又可证得,O是NN1的中点,所以BM∥ON且BM=ON,即BMON是平行四边形,所以BN∥OM,所以OM⊥平面CC1D1D,因为OM⊂面DMC1,所以平面DMC1⊥平面CC1D1D.
相关试卷
这是一份人教B版高考数学一轮总复习39空间中的垂直关系练习含答案,共10页。
这是一份2020-2021学年第十一章 立体几何初步11.4 空间中的垂直关系11.4.1 直线与平面垂直达标测试,共23页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份高中数学人教版新课标B必修21.2.3空间中的垂直关系达标测试,共3页。