终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    第6套人教初中数学八上 13.3.2《等边三角形》含有30度角的直角三角形教案

    立即下载
    加入资料篮
    第6套人教初中数学八上  13.3.2《等边三角形》含有30度角的直角三角形教案第1页
    第6套人教初中数学八上  13.3.2《等边三角形》含有30度角的直角三角形教案第2页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版八年级上册13.3.2 等边三角形教案

    展开

    这是一份人教版八年级上册13.3.2 等边三角形教案,共4页。
    含有30度角的直角三角形项目设计内容备 注课时1课时课 型新课教具三角板、刻度尺、圆规 教学目标知识与能力掌握含30度角的直角三角形的性质与应用 过程与方法通过探究含30度角的直角三角形的性质,增强学生对特殊直角三角形的认识 态度与情感培养学生用发展变化的思想看问题的价值观 重点 含30度的直角三角形的性质 难点含30度的直角三角形的性质的推导  教学手段方法动手操作,讲练结合 教学过程教师活动学生活动说明或设计意图   复习巩固等边三角形的性质:   三边相等 ,三个角都是60,三线合一三条对称轴. 等边三角形的判定: 定义:有三边相等的三角形是等边三角形.定理1:有一个角是60的等腰三角形是等边三角形.定理2:三个角都相等的三角形是等边三角形.    学生回顾口答  操作探究1.量一量含30°角的直角三角尺的最短直角边与斜边你有什么发现? 2.用两个全等的含30°角的直角三角尺你能拼出一个等边三角形吗?说说你的理由.3. 在直角三角形中,30°角所对的直角边与斜边有怎样的大小关系? 在直角三角形中,如果有一个锐角等于300,那么它所对的直角边等于斜边的一半。已知:如图,在RtABC中,C=90°BAC=30° 求证:BC= AB证明:延长BC至D,使CD=BC,连结AD.ABC与ADC中BC=DC ACB=ACDAC=AC ABC≌△ADC(SAS)AB=AD ABD 是等边三角形BC=DC=BD=AB            含30 °直角三角形性质:   直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。几何语言:RtABC中,C=90°A= 30° BC=AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 学生探究另一种证法   在BA上截取BE=BC,连接EC     B= 60°     BE=BC  BCE是等边三角形,BE=EC  BEC= 60°  A= 30°   ECA= 30°  AE=EC,  AB=AE+BE=2BC.                        从实验到证明,从理论上肯定正确性          让学生通过多种方法得到斜边与短直角边的关系,加深印象                              1)直角三角形中30°角所对的直角边等于另一直角边的一半.
    2)三角形中30°角所对的边等于最长边的一半。
    3)直角三角形中最小的直角边是斜边的一半。
    4)直角三角形的斜边是30°角所对直角边的2倍.1、如图,在RtABC中C=900 ,B=2 A,AB=6cm,则BC=________.2、如图, RtABC中,A= 30°AB+BC=12cm,则AB= _______.3、如图, RtABC中, A= 30°,BD平分ABC,      且BD=16cm,则AC=                  .     学生独立完成     含30 °直角三角形性质:   直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。几何语言:RtABC中,C=90°A= 30° BC=AB   如图在ABC中,AB=AC,BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.                         含30度角的直角三角形1、复习巩固2、探究新知3、课堂练习4、课堂小结5布置作业       

    相关教案

    初中数学13.3.2 等边三角形教案及反思:

    这是一份初中数学13.3.2 等边三角形教案及反思,共2页。

    初中数学人教版八年级上册第十三章 轴对称13.3 等腰三角形13.3.2 等边三角形教学设计:

    这是一份初中数学人教版八年级上册第十三章 轴对称13.3 等腰三角形13.3.2 等边三角形教学设计,共6页。

    初中数学人教版八年级上册13.3.2 等边三角形教案:

    这是一份初中数学人教版八年级上册13.3.2 等边三角形教案,共16页。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map