高中物理4 生活中的圆周运动学案
展开1.会分析火车转弯、汽车过拱桥等实际运动问题中向心力的来源,能解决生活中的圆周运动问题.2.了解航天器中的失重现象及原因.3.了解离心运动及物体做离心运动的条件,知道离心运动的应用及危害.
一、火车转弯
1.如果铁道弯道的内外轨一样高,火车转弯时,由外轨对轮缘的弹力提供向心力,由于质量太大,因此需要很大的向心力,靠这种方法得到向心力,不仅铁轨和车轮极易受损,还可能使火车侧翻.
2.铁路弯道的特点
(1)弯道处外轨略高于内轨.
(2)火车转弯时铁轨对火车的支持力不是竖直向上的,而是斜向弯道的内侧.支持力与重力的合力指向圆心.
(3)在修筑铁路时,要根据弯道的半径和规定的行驶速度,适当选择内外轨的高度差,使转弯时所需的向心力几乎完全由重力G和弹力FN的合力来提供.
二、拱形桥
三、航天器中的失重现象
1.向心力分析:宇航员受到的地球引力与座舱对他的支持力的合力提供向心力,由牛顿第二定律:mg-FN=meq \f(v2,R),所以FN=mg-meq \f(v2,R).
2.完全失重状态:当v=eq \r(Rg)时,座舱对宇航员的支持力FN=0,宇航员处于完全失重状态.
四、离心运动
1.定义:做圆周运动的物体沿切线飞出或做逐渐远离圆心的运动.
2.原因:向心力突然消失或合力不足以提供所需的向心力.
3.离心运动的应用和防止
(1)应用:离心干燥器;洗衣机的脱水筒;离心制管技术;分离血浆和红细胞的离心机.
(2)防止:转动的砂轮、飞轮的转速不能太高;在公路弯道,车辆不允许超过规定的速度.
1.判断下列说法的正误.
(1)铁路的弯道处,内轨高于外轨.( × )
(2)汽车驶过拱形桥顶部时,对桥面的压力等于车重.( × )
(3)汽车行驶至凹形桥底部时,对桥面的压力大于车重.( √ )
(4)绕地球做匀速圆周运动的航天器中的宇航员处于完全失重状态,故不再受重力.( × )
(5)航天器中处于完全失重状态的物体所受合力为零.( × )
(6)做离心运动的物体可以沿半径方向向外运动.( × )
2.如图1所示,汽车在通过水平弯道时,轮胎与地面间的摩擦力已达到最大值,若汽车转弯的速率增大到原来的eq \r(2)倍,为使汽车转弯时仍不打滑,其转弯半径应变为原来的________倍.
图1
答案 2
解析 汽车所受的摩擦力提供向心力,则有Ff=eq \f(mv2,r),Ff不变,v增大为eq \r(2)v,则弯道半径要变为原来的2倍.
一、火车转弯问题
1.弯道的特点
铁路弯道处,外轨高于内轨,若火车按规定的速度v0行驶,转弯所需的向心力完全由重力和支持力的合力提供,即mgtan θ=meq \f(v\\al( 2,0),R),如图2所示,则v0=eq \r(gRtan θ),其中R为弯道半径,θ为轨道平面与水平面间的夹角.
图2
2.速度与轨道压力的关系
(1)当火车行驶速度v等于规定速度v0时,所需向心力仅由重力和支持力的合力提供,此时内外轨道对火车无挤压作用.
(2)当火车行驶速度v>v0时,外轨道对轮缘有侧压力.
(3)当火车行驶速度v
图3
A.内轨对内侧车轮轮缘有挤压
B.外轨对外侧车轮轮缘有挤压
C.这时铁轨对火车的支持力等于eq \f(mg,cs θ)
D.这时铁轨对火车的支持力大于eq \f(mg,cs θ)
答案 C
解析 由牛顿第二定律F合=meq \f(v2,R),解得F合=mgtan θ,此时火车仅受重力和铁路轨道的支持力作用,如图所示,FNcs θ=mg,则FN=eq \f(mg,cs θ),内、外轨道对火车均无侧压力,故C正确,A、B、D错误.
针对训练 (多选)公路急转弯处通常是交通事故多发地带.如图4所示,某公路急转弯处是一圆弧,当汽车行驶的速率为v0时,汽车恰好没有向公路内外两侧滑动的趋势.则在该弯道处( )
图4
A.路面外侧高、内侧低
B.车速只要低于v0,车辆便会向内侧滑动
C.车速虽然高于v0,但只要不超出某一最高限度,车辆便不会向外侧滑动
D.当路面结冰时,与未结冰时相比,v0的值变小
答案 AC
解析 当汽车行驶的速率为v0时,汽车恰好没有向公路内外两侧滑动的趋势,即不受静摩擦力,此时仅由其重力和路面对其支持力的合力提供向心力,所以路面外侧高、内侧低,选项A正确;当车速低于v0时,需要的向心力小于重力和支持力的合力,汽车有向内侧运动的趋势,受到的静摩擦力向外侧,并不一定会向内侧滑动,选项B错误;当车速高于v0时,需要的向心力大于重力和支持力的合力,汽车有向外侧运动的趋势,静摩擦力向内侧,速度越大,静摩擦力越大,只有静摩擦力达到最大以后,车辆才会向外侧滑动,选项C正确;由mgtan θ=meq \f(v\\al( 2,0),r)可知,v0的值只与路面与水平面的夹角和弯道的半径有关,与路面的粗糙程度无关,选项D错误.
二、汽车过桥问题与航天器中的失重现象
1.拱形桥问题
(1)汽车过拱形桥(如图5)
图5
汽车在最高点满足关系:mg-FN=meq \f(v2,R),即FN=mg-meq \f(v2,R).
①当v=eq \r(gR)时,FN=0.
②当0≤v
说明:汽车通过拱形桥的最高点时,向心加速度向下,汽车对桥的压力小于其自身的重力,而且车速越大,压力越小,此时汽车处于失重状态.
(2)汽车过凹形桥(如图6)
图6
汽车在最低点满足关系:FN-mg=eq \f(mv2,R),即FN=mg+eq \f(mv2,R).
说明:汽车通过凹形桥的最低点时,向心加速度向上,而且车速越大,压力越大,此时汽车处于超重状态.由于汽车对桥面的压力大于其自身重力,故凹形桥易被压垮,因而实际中拱形桥多于凹形桥.
2.绕地球做圆周运动的卫星、飞船、空间站处于完全失重状态.
(1)质量为M的航天器在近地轨道运行时,航天器的重力提供向心力,满足关系:Mg=Meq \f(v2,R),则v=eq \r(gR).
(2)质量为m的航天员:设航天员受到的座舱的支持力为FN,则mg-FN=eq \f(mv2,R).
当v=eq \r(gR) 时,FN=0,即航天员处于完全失重状态.
(3)航天器内的任何物体都处于完全失重状态.
(2018·山西省实验中学高一下期中)如图7所示,地球可以看成一个巨大的拱形桥,桥面半径R=6 400 km,地面上行驶的汽车中驾驶员的重力G=800 N,在汽车不离开地面的前提下,下列分析中正确的是( )
图7
A.汽车的速度越大,则汽车对地面的压力也越大
B.不论汽车的行驶速度如何,驾驶员对座椅压力大小都等于800 N
C.只要汽车行驶,驾驶员对座椅压力大小都小于他自身的重力
D.如果某时刻速度增大到使汽车对地面压力为零,则此时驾驶员会有超重的感觉
答案 C
解析 汽车以及驾驶员的重力和地面对汽车的支持力的合力提供汽车做圆周运动所需向心力,则有mg-FN=meq \f(v2,R),重力是一定的,v越大,则FN越小,故A错误;因为只要汽车行驶,驾驶员的一部分重力则会用于提供驾驶员做圆周运动所需的向心力,结合牛顿第三定律可知驾驶员对座椅压力大小小于其自身的重力,故B错误,C正确;如果速度增大到使汽车对地面的压力为零,说明汽车和驾驶员的重力全部用于提供做圆周运动所需的向心力,处于完全失重状态,此时驾驶员会有失重的感觉,故D错误.
如图8所示,质量m=2.0×104 kg的汽车以不变的速率先后驶过凹形桥面和凸形桥面,两桥面的圆弧半径均为60 m,如果桥面能承受的压力不超过3.0×105 N,则:(g取10 m/s2)
图8
(1)汽车允许的最大速率是多少?
(2)若以所求速率行驶,汽车对桥面的最小压力是多少?
答案 (1)10eq \r(3) m/s (2)1.0×105 N
解析 (1)汽车在凹形桥的底部时,合力向上,汽车受到的支持力最大,由牛顿第三定律可知,桥面对汽车的支持力FN1=3.0×105 N,根据牛顿第二定律FN1-mg=meq \f(v2,r),解得v=eq \r(\f(FN1,m)-gr)=10eq \r(3) m/s
由于v
mg-FN2=meq \f(v2,r),即FN2=m(g-eq \f(v2,r))=1.0×105 N
由牛顿第三定律得,在凸形桥顶部汽车对桥面的压力为1.0×105 N,此即最小压力.
三、离心运动
1.物体做离心运动的原因
提供向心力的合力突然消失,或者合力不能提供足够的向心力.
注意:物体做离心运动并不是物体受到“离心力”作用,而是由于合外力不能提供足够的向心力.所谓“离心力”实际上并不存在.
2.合力与向心力的关系(如图9所示).
图9
(1)若F合=mrω2或F合=eq \f(mv2,r),物体做匀速圆周运动,即“提供”满足“需要”.
(2)若F合>mrω2或F合>eq \f(mv2,r),物体做近心运动,即“提供过度”.
(3)若0
关于离心运动,下列说法中正确的是( )
A.物体一直不受外力作用时,可能做离心运动
B.在外界提供的向心力突然变大时,原来做匀速圆周运动的物体将做离心运动
C.只要向心力的数值发生变化,原来做匀速圆周运动的物体就将做离心运动
D.当外界提供的向心力突然消失或数值变小时,原来做匀速圆周运动的物体将做离心运动
答案 D
解析 离心运动是指原来在做匀速圆周运动的物体后来远离圆心,所以选项A错误;离心运动发生的条件是:实际的合力小于做圆周运动所需要的向心力,所以选项B、C错误,D正确.
1.(火车转弯问题)(多选)全国铁路大面积提速,给人们的生活带来便利.火车转弯可以看成是在水平面内做匀速圆周运动,火车速度提高会使外轨受损.为解决火车高速转弯时外轨受损这一难题,以下措施可行的是( )
A.适当减小内外轨的高度差
B.适当增加内外轨的高度差
C.适当减小弯道半径
D.适当增大弯道半径
答案 BD
解析 设铁路弯道处轨道平面的倾角为α时,轮缘与内外轨间均无挤压作用,根据牛顿第二定律有mgtan α=meq \f(v2,r),解得v=eq \r(grtan α),所以为解决火车高速转弯时外轨受损这一难题,可行的措施是适当增大倾角α(即适当增加内外轨的高度差)和适当增大弯道半径r.
2.(航天器中的失重现象)(多选)航天飞机在围绕地球做匀速圆周运动过程中,关于航天员,下列说法中正确的是( )
A.航天员受到的重力消失了
B.航天员仍受重力作用,重力提供其做匀速圆周运动的向心力
C.航天员处于超重状态
D.航天员对座椅的压力为零
答案 BD
解析 航天飞机在绕地球做匀速圆周运动时,依然受地球的吸引力,而且正是这个吸引力提供航天飞机绕地球做圆周运动的向心力,航天员的加速度与航天飞机的相同,是其重力提供向心力,选项A错误,B正确;此时航天员不受座椅弹力,即航天员对座椅的压力为零,处于完全失重状态,选项D正确,C错误.
3.(离心现象)在冬奥会短道速滑项目中,运动员绕周长仅111米的短道竞赛.比赛过程中运动员在通过弯道时如果不能很好地控制速度,将发生侧滑而摔离正常比赛路线.如图10所示,圆弧虚线Ob代表弯道,即正常运动路线,Oa为运动员在O点时的速度方向(研究时可将运动员看做质点).下列论述正确的是( )
图10
A.发生侧滑是因为运动员受到的合力方向背离圆心
B.发生侧滑是因为运动员受到的合力大于所需要的向心力
C.若在O点发生侧滑,则滑动的方向在Oa左侧
D.若在O点发生侧滑,则滑动的方向在Oa右侧与Ob之间
答案 D
解析 发生侧滑是因为运动员的速度过大,所需要的向心力过大,而运动员受到的合力小于所需要的向心力,受到的合力方向指向圆弧内侧,故选项A、B错误;运动员在水平方向不受任何外力时沿Oa方向做离心运动,实际上运动员受到的合力方向指向圆弧Ob内侧,所以运动员滑动的方向在Oa右侧与Ob之间,故选项C错误,D正确.
4.(汽车转弯与过桥问题)(2019·山西现代双语学校期中)在高级沥青铺设的高速公路上,汽车的设计时速是108 km/h,汽车在这种路面上行驶时,它的轮胎与地面的最大静摩擦力等于车重的eq \f(3,5)(g取10 m/s2).
(1)如果汽车在这种高速公路的弯道上拐弯,假设弯道的路面是水平的,其弯道的最小半径是多少?
(2)如果高速公路上设计了圆弧拱形立交桥,要使汽车能够以设计时速安全通过圆弧拱桥,这个圆弧拱形立交桥的半径至少是多少?
答案 (1)150 m (2)90 m
解析 设汽车的质量为m.
(1)汽车在水平路面上拐弯,可视为汽车做匀速圆周运动,其向心力由车与路面间的静摩擦力提供,当静摩擦力达到最大值时,由向心力公式可知这时的半径最小,有Fmax=eq \f(3,5)mg=meq \f(v2,rmin)
由速度v=108 km/h=30 m/s得
弯道半径rmin=150 m
(2)汽车过圆弧拱桥,可看做在竖直平面内做匀速圆周运动,到达最高点时,根据向心力公式有mg-FN=meq \f(v2,R)
为了保证安全通过,车与路面间的弹力FN必须大于等于零,即有mg≥meq \f(v2,R),代入v=108 km/h=30 m/s,得R≥90 m,故半径至少是90 m.
考点一 交通工具的转弯问题
1.如图1所示,质量相等的汽车甲和汽车乙,以相等的速率沿同一水平弯道做匀速圆周运动,汽车甲在汽车乙的外侧.两车沿半径方向受到的摩擦力分别为Ff甲和Ff乙.以下说法正确的是( )
图1
A.Ff甲小于Ff乙
B.Ff甲等于Ff乙
C.Ff甲大于Ff乙
D.Ff甲和Ff乙的大小均与汽车速率无关
答案 A
解析 汽车在水平面内做匀速圆周运动,摩擦力提供做匀速圆周运动的向心力,即Ff=F向=meq \f(v2,r),由于m甲=m乙,v甲=v乙,r甲>r乙,则Ff甲<Ff乙,A正确.
2.(多选)如图2所示,铁路转弯处外轨略高于内轨,若在某转弯处规定行驶的速度为v,则下列说法正确的是( )
图2
A.若火车行驶到转弯处的速度大于规定速度v,火车将对外轨有侧向的挤压作用
B.若火车行驶到转弯处的速度小于规定速度v,火车将对外轨有侧向的挤压作用
C.若火车要提速行驶,而弯道坡度不变,要减小弯道半径
D.若火车要提速行驶,而弯道半径不变,弯道的坡度应适当增大
答案 AD
解析 火车在转弯处做匀速圆周运动,按规定速度行驶时,其向心力完全由其重力和轨道对其弹力的合力提供;若火车行驶到转弯处的速度大于规定速度v,则运行过程中需要的向心力增大,火车将对外轨有侧向的挤压作用;若火车行驶到转弯处的速度小于规定速度v,则运行过程中需要的向心力减小,而火车重力和支持力的合力将大于需要的向心力,火车将对内轨有侧向的挤压作用,故A正确,B错误.由mgtan θ=meq \f(v2,r)得:v=eq \r(grtan θ),若火车要提速行驶,应适当增大弯道的坡度θ,或增大弯道半径r,C错误,D正确.
3.在高速公路的拐弯处,通常路面都是外高内低.如图3所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些.汽车的运动可看做是半径为R的圆周运动.设内、外路面高度差为h,路基的水平宽度为d,路面的宽度为L.已知重力加速度为g.要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于( )
图3
A.eq \r(\f(gRh,L)) B.eq \r(\f(gRh,d))
C.eq \r(\f(gRL,h)) D.eq \r(\f(gRd,h))
答案 B
解析 设路面的倾角为θ,根据牛顿第二定律得mgtan θ=meq \f(v2,R),又由数学知识可知tan θ=eq \f(h,d),联立解得v=eq \r(\f(gRh,d)),选项B正确.
4.摆式列车是集电脑、自动控制等高新技术于一体的新型高速列车,如图4所示.当列车转弯时,在电脑控制下,车厢会自动倾斜;行驶在直轨上时,车厢又恢复原状,就像玩具“不倒翁”一样.假设有一摆式列车在水平面内行驶,以360 km/h的速度转弯,转弯半径为1 km,则质量为50 kg的乘客,在转弯过程中所受到的火车对他的作用力大小为(g取10 m/s2)( )
图4
A.500 N B.1 000 N
C.500eq \r(2) N D.0
答案 C
解析 360 km/h=100 m/s,乘客所需的向心力Fn=meq \f(v2,R)=500 N,而乘客的重力为500 N,故火车对乘客的作用力大小FN=eq \r(F\\al( 2,n)+G2)=500eq \r(2) N,C正确.
考点二 汽车过桥问题和航天器中的失重现象
5.(2019·长丰二中高一下学期期末)如图5所示,当汽车通过拱桥顶点的速度为6 m/s时,车对桥顶的压力为车重的eq \f(3,4),如果要使汽车在桥面行驶至桥顶时,对桥面的压力为零,则汽车通过桥顶的速度大小应为( )
图5
A.3 m/s B.10 m/s
C.12 m/s D.24 m/s
答案 C
解析 根据牛顿第二定律得:mg-FN=meq \f(v2,r),即eq \f(1,4)mg=meq \f(v2,r),当汽车对桥面的压力为零时,桥面对汽车的支持力为零,有:mg=meq \f(v′2,r),解得:v′=2v=12 m/s,故C正确.
6.(2019·天津六校高一下期中)如图6所示,汽车车厢顶部悬挂一个轻质弹簧,弹簧下端拴一个质量为m的小球.当汽车以某一速率在水平地面上匀速行驶时,弹簧长度为L1,当汽车以大小相同的速度匀速通过一个桥面为圆弧形的凸形桥的最高点时,弹簧长度为L2,下列选项中正确的是( )
图6
A.L1=L2 B.L1>L2
C.L1
7.下列四幅图中的行为可以在绕地球做匀速圆周运动的“天宫二号”舱内完成的有( )
A.用台秤称量重物的质量
B.用水杯喝水
C.用沉淀法将水与沙子分离
D.给小球一个很小的初速度,小球能在拉力作用下在竖直面内做圆周运动
答案 D
解析 重物处于完全失重状态,对台秤的压力为零,无法通过台秤测量重物的质量,故A错误;水杯中的水处于完全失重状态,不会因重力而流入嘴中,故B错误;沙子处于完全失重状态,不能通过沉淀法与水分离,故C错误;小球处于完全失重状态,给小球一个很小的初速度,小球能在拉力作用下在竖直面内做圆周运动,故D正确.
考点三 离心现象
8.(多选)如图7所示,在匀速转动的洗衣机脱水筒内壁上,有一件湿衣服随圆筒一起转动而未滑动,则( )
图7
A.衣服随脱水筒做圆周运动的向心力由衣服的重力提供
B.水会从脱水筒甩出是因为水滴受到的向心力很大
C.加快脱水筒转动角速度,衣服对筒壁的压力增大
D.加快脱水筒转动角速度,脱水效果会更好
答案 CD
解析 衣服受到竖直向下的重力、竖直向上的静摩擦力、指向圆心的支持力,重力和静摩擦力是一对平衡力,大小相等,故向心力是由支持力提供的,A错误;脱水筒转动角速度增大以后,支持力增大,故衣服对筒壁的压力也增大,C正确;对于水而言,衣服对水滴的附着力提供其做圆周运动的向心力,说水滴受向心力本身就不正确,B错误;随着脱水筒转动角速度的增加,需要的向心力增加,当附着力不足以提供需要的向心力时,衣服上的水滴将做离心运动,故脱水筒转动角速度越大,脱水效果会越好,D正确.
9.如图8所示的陀螺,是很多人小时候喜欢玩的玩具.从上往下看(俯视),若陀螺立在某一点顺时针匀速转动,此时滴一滴墨水到陀螺,则被甩出的墨水径迹可能是下列的( )
图8
答案 D
10.如图9所示,赛车在水平路面上转弯时,常常在弯道上冲出跑道,则以下说法正确的是( )
图9
A.是由于赛车行驶到弯道时,运动员未能及时转动方向盘才造成赛车冲出跑道的
B.是由于赛车行驶到弯道时,运动员没有及时减速才造成赛车冲出跑道的
C.是由于赛车行驶到弯道时,运动员没有及时加速才造成赛车冲出跑道的
D.由公式F=mω2r可知,弯道半径越大,越容易冲出跑道
答案 B
11.(多选)一个质量为m的物体(体积可忽略),在半径为R的光滑半球顶点处以水平速度v0运动,如图10所示,重力加速度为g,则下列说法正确的是( )
图10
A.若v0=eq \r(gR),则物体对半球顶点无压力
B.若v0=eq \f(1,2)eq \r(gR),则物体对半球顶点的压力为eq \f(1,2)mg
C.若v0=0,则物体对半球顶点的压力为mg
D.若v0=0,则物体对半球顶点的压力为零
答案 AC
解析 设物体在半球顶点受到的支持力为FN,若v0=eq \r(gR),由mg-FN=meq \f(v\\al( 2,0),R),得FN=0,则根据牛顿第三定律,物体对半球顶点无压力,A正确;若v0=eq \f(1,2)eq \r(gR),由mg-FN=meq \f(v\\al( 2,0),R),得FN=eq \f(3,4)mg,则根据牛顿第三定律,物体对半球顶点的压力为eq \f(3,4)mg,B错误;若v0=0,物体处于平衡状态,对半球顶点的压力为mg,C正确,D错误.
12.(2019·泉州五中期中)如图11所示,在粗糙水平木板上放一个物块,使水平木板和物块一起在竖直平面内沿逆时针方向做匀速圆周运动,ab为水平直径,cd为竖直直径,在运动过程中木板始终保持水平,物块相对木板始终静止,则( )
图11
A.物块始终受到三个力作用
B.只有在a、b、c、d四点,物块受到的合外力才指向圆心
C.从a到b,物块所受的摩擦力先增大后减小
D.从b到a,物块处于超重状态
答案 D
解析 在c、d两点处,物块只受重力和支持力,在其他位置处物块受到重力、支持力、静摩擦力三个作用力,故A错误;物块做匀速圆周运动,合外力提供向心力,所以合外力始终指向圆心,故B错误;从a运动到b,物块的加速度的方向始终指向圆心,水平方向的加速度先减小后反向增大,根据牛顿第二定律知,物块所受木板的摩擦力先减小后增大,故C错误;从b运动到a,向心加速度有向上的分量,则物块处于超重状态,故D正确.
13.如图12所示为汽车在水平路面做半径为R的大转弯的后视图,悬吊在车顶的灯左偏了θ角,则:(重力加速度为g)
图12
(1)车正向左转弯还是向右转弯?
(2)车速是多少?
(3)若(2)中求出的速度正是汽车转弯时不打滑允许的最大速度,则车轮与路面间的动摩擦因数μ是多少?(最大静摩擦力等于滑动摩擦力)
答案 (1)向右转弯 (2)eq \r(gRtan θ) (3)tan θ
解析 (1)对灯受力分析可知,合外力方向向右,所以车正向右转弯;
(2)设灯的质量为m,对灯受力分析知
mgtan θ=meq \f(v2,R),得v=eq \r(gRtan θ)
(3)设汽车的质量为M,汽车刚好不打滑,有μMg=Meq \f(v2,R)得μ=tan θ.
14.一辆汽车匀速率通过一座圆弧形拱桥后,接着又以相同速率通过一圆弧形凹形桥,如图13,设两圆弧半径相等,汽车通过拱桥桥顶时,对桥面的压力大小F1为车重的一半,汽车通过圆弧形凹形桥的最低点时,对桥面的压力大小为F2,求F1与F2之比.
图13
答案 1∶3
解析 汽车过圆弧形桥的最高点(或最低点)时,重力与桥面对汽车的支持力的合力提供向心力.由牛顿第三定律可知,汽车受桥面对它的支持力与它对桥面的压力大小相等,汽车过圆弧形拱桥的最高点时,由牛顿第二定律可得:
G-F1=meq \f(v2,R),
同理,汽车过圆弧形凹形桥的最低点时,有:
F2-G=meq \f(v2,R),
由题意可知:F1=eq \f(1,2)G
由以上各式可解得:F2=eq \f(3,2)G,
所以F1∶F2=1∶3.汽车过拱形桥
汽车过凹形桥
受力
分析
向心力
Fn=mg-FN=meq \f(v2,r)
Fn=FN-mg=meq \f(v2,r)
对桥的
压力
FN′=mg-meq \f(v2,r)
FN′=mg+meq \f(v2,r)
结论
汽车对桥的压力小于汽车的重力,而且汽车速度越大,对桥的压力越小
汽车对桥的压力大于汽车的重力,而且汽车速度越大,对桥的压力越大
高中物理第六章 圆周运动4 生活中的圆周运动导学案: 这是一份高中物理<a href="/wl/tb_c163064_t4/?tag_id=42" target="_blank">第六章 圆周运动4 生活中的圆周运动导学案</a>,共12页。
高中物理人教版 (2019)必修 第二册第六章 圆周运动4 生活中的圆周运动学案: 这是一份高中物理人教版 (2019)必修 第二册第六章 圆周运动4 生活中的圆周运动学案,共5页。
人教版 (2019)必修 第二册4 生活中的圆周运动导学案: 这是一份人教版 (2019)必修 第二册4 生活中的圆周运动导学案,共4页。学案主要包含了课程标准,学习目标,课内预习,问题导学,深入探究,课堂检测,课后反思等内容,欢迎下载使用。