所属成套资源:2021-2022学年九年级数学上学期期末测试卷(含答案)
2020-2021学年北师版广东省深圳市南山区九年级数学上学期期末考试试卷
展开
这是一份2020-2021学年北师版广东省深圳市南山区九年级数学上学期期末考试试卷,共14页。试卷主要包含了选择题.,四象限,解答题等内容,欢迎下载使用。
2020-2021学年广东省深圳市南山区九年级(上)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上).1. 如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是 ( )A. B. C. D. 2. 下列判断不正确的是( )A. 四个角相等的四边形是矩形 B. 对角线垂直的四边形是菱形C. 对角线相等的平行四边形是矩形 D. 对角线垂直的平行四边形是菱形3. 在一个不透明的口袋中,装有若干个红球和3个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是,则估计盒子中红球的个数大约是 A. 20个 B. 16个 C. 15个 D. 12个4. 一元二次方程的根的情况是 A. 有两个不相等的实数根 B. 有两个相等的实数根C. 只有一个实数根 D. 没有实数根5. △ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′位似比是1∶2,已知△ABC的面积是10,则△A′B′C′的面积是( )A. 10 B. 20 C. 40 D. 806. 关于反比例函数y=﹣,下列说法不正确的是( )A 函数图象分别位于第二、四象限B. 函数图象关于原点成中心对称C. 函数图象经过点(﹣6,﹣2)D. 当x<0时,y随x的增大而增大7. 如图.AB∥CD∥EF,AF、BE交于点G,下列比例式错误的是( )A B. C. D. 8. 如图,已知点A是反比例函数的图像上一点,AB∥x轴交另一个反比例函数的图像于点B,C为x轴上一点,若S△ABC=2,则k的值为( )A. 4 B. 2 C. 3 D. 19. 如图,在菱形ABCD中,对角线AC、BD交于点O,且AC=6,BD=8,过A点作AE垂直BC,交BC于点E,则的值为( )A B. C. D. 10. 如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下面四个结论:①CF=2AF;②AD=CD;③DF=DC;④△AEF∽△CAB;⑤S四边形CDEF=S△ABF.其中正确的结论有( )A. 2个 B. 3个 C. 4个 D. 5个二、填空题(本题有5小题,每小题3分,共15分.把答案填在答题卡上).11. 已知,且,则的值为__________.12. 张明同学想利用树影测量校园内的树高,他在某一时刻测得小树高为1.5m时,其影长为1.2m,当他测量教学楼旁的一棵大树影长时,因大树靠近教学楼,有一部分影子在墙上.经测量,地面部分影长为6.4m,墙上影长为1.4m,那么这棵大树高约________m13. 设m、n是方程x2+x-1001=0的两个实数根,则m2+2m+n的值为____.14. 如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为_____.15. 如图,在平面直角坐标系中,矩形ABCD的顶点A、D分别在x轴、y轴上,对角线BDx轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0)、D(0,4),则反比例函数的解析式为_____.三、解答题:(16题6分,17题6分,18题7分,19题8分,20题9分,21题9分,22题10分,共计55分)16. 解下列方程:(1)2(x﹣2)2=x2﹣4.(2)2x2﹣4x﹣1=0. 17. 甲、乙、丙、丁四位同学参加校田径运动会4×100米接力跑比赛,因为丁的速度最快,所以由他负责跑最后一棒,其他三位同学的跑步顺序随机安排.(1)请用画树状图或列表的方法表示甲、乙、丙三位同学所有的跑步顺序;(2)请求出正好由丙将接力棒交给丁的概率. 18. 如图,在菱形ABCD中,E为对角线BD上一点,且AE=DE,连接CE.(1)求证:CE=DE.(2)当BE=2,CE=1时,求菱形的边长. 19. 某商店准备销售一种多功能旅行背包,计划从厂家以每个30元的价格进货,经过市场发现当每个背包的售价为40元时,月均销量为280个,售价每增长2元,月均销量就相应减少20个.(1)若使这种背包的月均销量不低于130个,每个背包售价应不高于多少元?(2)在(1)条件下,当该这种书包销售单价为多少元时,销售利润是3120元?(3)这种书包的销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由. 20. 如图,在平面直角坐标系中,直线y=3x+b经过点A(﹣1,0),与y轴正半轴交于B点,与反比例函数y=(x>0)交于点C,且BC=2AB,BD∥x轴交反比例函数y=(x>0)于点D,连接AD.(1)求b、k的值;(2)求△ABD的面积;(3)若E为射线BC上一点,设E的横坐标为m,过点E作EF∥BD,交反比例函数y=(x>0)的图象于点F,且EF=BD,求m的值. 21. 问题背景如图(1),在四边形ABCD中,∠B+∠D=180°,AB=AD,∠BAD=α,以点A为顶点作一个角,角的两边分别交BC,CD于点E,F,且∠EAFα,连接EF,试探究:线段BE,DF,EF之间的数量关系.(1)特殊情景在上述条件下,小明增加条件“当∠BAD=∠B=∠D=90°时”如图(2),小明很快写出了:BE,DF,EF之间的数量关系为______.(2)类比猜想类比特殊情景,小明猜想:在如图(1)的条件下线段BE,DF,EF之间的数量关系是否仍然成立?若成立,请你帮助小明完成证明;若不成立,请说明理由.(3)解决问题如图(3),在△ABC中,∠BAC=90°,AB=AC=4,点D,E均在边BC上,且∠DAE=45°,若BD,请直接写出DE长. 22. (1)证明推断:如图(1),在正方形ABCD中,点E、Q分别在边BC、AB上,DQ⊥AE于点O,点G、F分别在边CD、AB上,GF⊥AE.①填空:DQ AE(填“>”“<”或“=”);②推断的值为 ;(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF折叠,使点A落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP,当k=时,若=,GF=2,求CP的长.
2020-2021学年广东省深圳市南山区九年级(上)期末数学试卷一、选择题1. A 2. B 3. D 4. A 5. C 6. C 7. D 8. B 9. C 10. D二、填空题11. 1212. 9.4m13.100014. 15. 三、解答题:16. 解:(1)原式移项得:2(x﹣2)2﹣(x﹣2)(x+2)=0,因式分解得:(x﹣2)(2x﹣4﹣x﹣2)=0,所以x﹣2=0或2x﹣4﹣x﹣2=0;所以x1=2,x2=6;(2)x2﹣2x= ,x2﹣2x+1=+1,即(x﹣1)2=,∴x﹣1=±,所以x1=1+,x2=1﹣.17.解:(1)画树状图如图:(2)由(1)得:共有6个等可能的结果,正好由丙将接力棒交给丁的结果有2个,∴正好由丙将接力棒交给丁的概率为 .18. (1)∵四边形ABCD是菱形,∴∠ABE=∠CBE,AB=CB,在△ABE和△CBE中,,∴△ABE≌△CBE,∴AE=CE,∵AE=DE,∴CE=DE;(2)如图,连接AC交BD于H,∵四边形ABCD是菱形,∴AH⊥BD,BH=DH,AH=CH,∵CE=DE=AE=1,∴BD=BE+DE=2+1=3,∴BH=BD=,EH=BE﹣BH=2﹣=,在Rt△AHE中,由勾股定理得:AH===,在Rt△AHB中,由勾股定理得:AB===,∴菱形的边长为.19.【详解】(1)设每个背包的售价为x元,则月均销量为(280﹣×20)个,依题意,得:280﹣×20≥130,解得:x≤55.答:每个背包售价应不高于55元.(2)∵销售利润是3120元∴(x﹣30)(280﹣×20)=3120,整理,得:x2﹣98x+2352=0,解得:x1=42,x2=56(不合题意,舍去).答:当该这种书包销售单价为42元时,销售利润是3120元.(3)∵销售利润是3700元,∴(x﹣30)(280﹣×20)=3700,整理,得:x2﹣98x+2410=0.∵△=(﹣98)2﹣4×1×2410=﹣36<0,∴该方程无解,∴这种书包的销售利润不能达到3700元.20. 解:(1)作CH⊥y轴于点H,∵直线y=3x+b经过点A(﹣1,0),∴﹣1×3+b=0,解得,b=3,对于直线y=3x+3,当x=0时,x=3,∴点B的坐标为(0,3),即OB=3,∵CH∥OA,∴△AOB∽△CHB,∴,即,解得,CH=2,BH=6,∴OH=OB+BH=9,∴点C的坐标为(2,9),∴k=2×9=18;(2)∵BD∥x轴,∴点D的纵坐标为3,∴点D的横坐标为=6,即BD=6,∴△ABD的面积=×6×3=9;(3)EF=BD=×6=2,设E(m,3m+3),当0<m<2时,点F的坐标为(m+2,3m+3),∵点F在反比例函数y=上,∴(m+2)(3m+3)=18,解得,m1=﹣4(舍去),m2=1,当m>2时,点F的坐标为(m﹣2,3m+3),∵点F在反比例函数y=上,∴(m﹣2)(3m+3)=18,解得,m3=(舍去),m4=,综上所述,m的值为1或.21. (1)BE+DF=EF,如图1,将△ABE绕点A逆时针旋转90°,得到△ADG,∵∠ADC=∠B=∠ADG=90°,∴∠FDG=180°,即点F,D,G共线.由旋转可得AE=AG,BE=DG,∠BAE=∠DAG.∵∠BAE+∠DAF=∠BAD﹣∠EAF=90°﹣∠BAD=90°-45°=45°,∴∠DAG+∠DAF=45°,即∠FAG=45°,∴∠EAF=∠FAG,∴△AFE≌△AFG(SAS),∴EF=FG.又∵FG=DG+DF=BE+DF,∴BE+DF=EF,故答案为BE+DF=EF.(2)成立.如图2,将△ABE绕点A逆时针旋转α得到△ADH,可得∠ABE=∠ADH,∠BAE=∠DAH,AE=AH,BE=DH.∵∠B+∠ADC=180°,∴∠ADH+∠ADC=180°,∴点C,D,H在同一直线上.∵∠BAD=α,∠EAFα,∴∠BAE+∠FADα,∴∠DAH+∠FADα,∴∠FAH=∠EAF,又∵AF=AF,∴△AEF≌△AHF(SAS),∴EF=FH=DF+DH=DF+BE;(3)DE,如图3,将△AEC绕点A顺时针旋转90°,得到△AE′B,连接DE′.可得BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,在Rt△ABC中,∵AB=AC=4,∠BAC=90°,∴∠ABC=∠ACB=45°,BC=4,∴CD=BC=BD=3,∴∠ABC+∠ABE′=90°,即∠E′BD=90°,∴E′B2+BD2=E′D2.易证△AE′D≌△AED,∴DE=DE′,∴DE2=BD2+EC2,即DE2,解得.22.【详解】(1)①解:∵四边形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DQ,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.故答案是:=;②解:∵DQ⊥AE,FG⊥AE,∴DQ∥FG,∵FQ∥DG,∴四边形DQFG是平行四边形,∴FG=DQ,∵AE=DQ,∴FG=AE,∴=1.故答案为:1.(2)解:结论:=k.理由:如图2中,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,∴∠BAE=∠FGM,∴△ABE∽△GMF,∴=,∵∠AMG=∠D=∠DAM=90°,∴四边形AMGD是矩形,∴GM=AD,∴===k.(3)解:如图2中,作PM⊥BC交BC的延长线于M.由= ,可以假设BE=3k,BF=4k,EF=AF=5k,∵= ,FG=2,∴AE=3,∴(3k)2+(9k)2=(3)2,∴k=1或﹣1(舍弃),∴BE=3,AB=9,∵BC:AB=2:3,∴BC=6,∴BE=CE=3,AD=PE=BC=6,∵∠EBF=∠FEP=∠PME=90°,∴∠FEB+∠PEM=90°,∠PEM+∠EPM=90°,∴∠FEB=∠EPM,∴△FBE∽△EMP,∴==,∴ ==,∴EM= ,PM= ,∴CM=EM﹣EC=﹣3=,∴PC==.
相关试卷
这是一份广东省深圳市南山区2023年九年级上学期期末考试数学试卷附答案,共12页。试卷主要包含了单选题,三象限B.第一,四象限D.第二等内容,欢迎下载使用。
这是一份广东省深圳市南山区2023-2024学年九年级上学期11月期中数学试题,共4页。
这是一份精品解析:广东省深圳市南山区2022-2023学年九年级上学期期末考试数学试卷,文件包含精品解析广东省深圳市南山区2022-2023学年九年级上学期期末考试数学试卷原卷版docx、精品解析广东省深圳市南山区2022-2023学年九年级上学期期末考试数学试卷解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。