初中数学21.2.1 配方法授课ppt课件
展开(1)什么是一个数的平方根?平方根有哪些性质?
问题1:一桶油漆可刷的面积为1500 dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?
(1)设其中一个盒子的棱长为x dm,则这个盒子的表面积为 dm2;
(2)据题意可得等量关系为 ;
(3)根据等量关系可列方程 ;
(4)化简可得 .
解:设其中一个盒子的棱长为x dm,则这个盒子的表面积为6x2 dm2.
根据题意,得10×6x2=1500,整理,得x2=25.
根据平方根的意义,得x=±5.
即x1=5,x2=-5(不合题意,舍去)
答:其中一个盒子的棱长为5 dm.
x=±5都是方程x2=25的根,在这里为什么舍去一个根?
棱长不能为负数,所以正方体盒子的棱长为5 dm.
解下列方程.(1)x2=4; (2)x2-2=0.
解:(1)根据平方根的意义得x=±2,∴x1=2,x2=-2.
(2)移项得x2=2,∴x=±
通过直接将某一个数开平方解一元二次方程的方法叫做直接开平方法.
解下列方程.(抢答)(1)x2=9; (2)9x2-144=0.
解:(1)根据平方根的意义,得x=±3,∴x1=3,x2=-3.
(2)移项,得9x2=144,系数化为1,得x2=16
根据平方根的意义,得x=±4,∴x1=4,x2=-4.
一般地,对于方程x2=p:
(1)当p>0时,方程有两个不相等的实数根
(2)当p=0时,方程有两个相等的实数根x1=x2=0;
(3)当p<0时,方程没有实数根.
解下列方程.(1)(x+3) 2=5; (2)4(x+3)2=5.
解:(1)直接开平方,得x+3=±
解形如(x+n)2=p(p≥0)的方程
(2)两边同时除以4,得 =
(1)通过上面的探究,解一元二次方程的基本策略是什么?
“降次”是解一元二次方程的基本策略,直接开平方法是根据平方根的意义,把一个一元二次方程“降次”,达到转化为两个一元一次方程的目的.
(2)能用直接开平方法解的一元二次方程有什么特点?方程的解是什么?
如果一个一元二次方程具有(x+n)2=p(p≥0)的形式,那么就可以用直接开平方法求解,方程的解为 .
(3)用直接开平方法解一元二次方程的一般步骤是什么?
首先将一元二次方程化为左边是含有未知数的一个完全平方式,右边是非负数的形式,然后用平方根的概念求解.
1.直接开平方法是解一元二次方程的最基本的方法,主要解形如(x+n)2=p(p≥0)的一元二次方程,解方程的理论依据是平方根的定义.
2.利用直接开平方法解一元二次方程时,要注意开方的结果.
3.方程(x+n)2=p中,当p<0时,方程没有实数根.
直接开平方法解一元二次方程的基本策略是降次,依据是平方根的概念.
直接开平方法适合解形如(x+n)2=p(p≥0)的一元二次方程.
一元二次方程(x+n)2=p根的情况:当p≥0时,方程有实数根,当p<0时,方程没有实数根.
1.方程3x2+27=0的解是( )A.x=±3 B.x=-3C.无实数根 D.以上都不对
解析:移项,得3x2=-27,系数化为1,得x2=-9,因为-9<0,所以方程没有实数根.故选C.
2.方程(x-2)2=9的解是( )A.x1=5,x2=-1B.x1=-5,x2=1C.x1=11,x2=-7D.x1=-11,x2=7
解析:直接开平方得x-2=±3,即x-2=3或x-2=-3,所以方程的两个根是x1=5,x2=-1.故选A.
3.用直接开平方法解方程(x+h)2=k,方程必须满足的条件是( )A.k≥0B.h≥0C.hk>0D.k<0
4.方程(x-m)2=n(n为正数)的解是
解析:因为负数没有平方根,所以k≥0.故选A.
5.解下列方程.(1)4x2=81; (2)(x-2)2=5;(3)36x2-1=0; (4)3(x-1)2-6=0.
解:(1)系数化为1得
初中数学人教版九年级上册21.2.1 配方法教案配套ppt课件: 这是一份初中数学人教版九年级上册21.2.1 配方法教案配套ppt课件,共15页。PPT课件主要包含了知识回顾,合作探究,解方程,练一练,怎样解方程,降次转化,大胆试一试,共同点,填一填口答,变形为等内容,欢迎下载使用。
初中21.2.1 配方法授课ppt课件: 这是一份初中21.2.1 配方法授课ppt课件,共19页。PPT课件主要包含了a-2b2,知识点1,转化思想,知识点2,规律总结,基础巩固,2x+12,x-152,配方法解一元二次方程,配方法等内容,欢迎下载使用。
初中数学21.2.1 配方法课前预习课件ppt: 这是一份初中数学21.2.1 配方法课前预习课件ppt,共12页。PPT课件主要包含了非负数,完全平方,x+√324等内容,欢迎下载使用。

