所属成套资源:2022【备战新高考】新高考多选题+热点题型套餐试题(原卷+解析版)
提升套餐练08 【新题型】新高考数学多选题与热点解答题组合练(原卷版)+(解析版)
展开这是一份提升套餐练08 【新题型】新高考数学多选题与热点解答题组合练(原卷版)+(解析版),文件包含提升套餐练08-新题型新高考数学多选题与热点解答题组合练原卷版doc、提升套餐练08-新题型新高考数学多选题与热点解答题组合练解析版doc等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。
提升套餐练8
一、【多选题提升练】
1.刘女士的网店经营坚果类食品,2019年各月份的收入、支出(单位:百元)情况的统计如图所示,下列说法中正确的是( )
A.4至5月份的收入的变化率与11至12月份的收入的变化率相同
B.支出最高值与支出最低值的比是
C.第三季度平均收入为5000元
D.利润最高的月份是3月份和10月份
【解析】对于A选项,4至5月份的收入的变化率为,11至12月份的变化率为,因而两个变化率相同,所以A项正确.对于B选项,支出最高值是2月份60百元,支出最低值是5月份的10百元,故支出最高值与支出最低值的比是,故B项错误.对于C选项,第三季度的7,8,9月每个月的收入分别为40百元,50百元,60百元,故第三季度的平均收入为百元,故C选项正确.对于D选项,利润最高的月份是3月份和10月份都是30百元,故D项正确.综上可知,正确的为ACD,故选:ACD.
2.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线恰好是四叶玫瑰线.给出下列结论正确的是( )
A.曲线经过5个整点(即横、纵坐标均为整数的点)
B.曲线上任意一点到坐标原点的距离都不超过2
C.曲线围成区域的面积大于
D.方程表示的曲线在第一象限和第三象限
【解析】把,代入曲线,可知等号两边成立,所以曲线在第一象限过点,
由曲线的对称性可知,该点的位置是图中的点,
对于A选项,只需要考虑曲线在第一象限内经过的整点即可,把,和代入曲线的方程验证可知,等号不成立,所以曲线在第一象限内不经过任何整点,再结合曲线的对称性可知,
曲线只经过整点,即A错误;
对于B选项,因为,
所以,所以,所以,即B正确;
对于C选项,以为圆点,2为半径的圆的面积为,显然曲线围成的区域的面积小于圆的面积,即C错误;
对于D选项,因为,所以与同号,仅限与第一和三象限,即D正确.故选:BD.
3.已知函数f(x)=|sinx||cosx|,则下列说法正确的是( )
A.f(x)的图象关于直线对称
B.f(x)的周期为
C.(π,0)是f(x)的一个对称中心
D.f(x)在区间上单调递增
【解析】因为函数f(x)=|sinx||cosx|=|sinxcosx||sin2x|,
画出函数图象,如图所示;
由图可知,f(x)的对称轴是x,k∈Z;
所以x是f(x)图象的一条对称轴, A正确;f(x)的最小正周期是,所以B正确;
f(x)是偶函数,没有对称中心,C错误;由图可知,f(x)|sin2x|在区间上是单调减函数,D错误.故选:AB.
4.德国著名数学家狄利克雷(Dirichlet,1805~1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数” 其中R为实数集,Q为有理数集.则关于函数有如下四个命题,正确的为( )
A.函数是偶函数
B.,,恒成立
C.任取一个不为零的有理数T,对任意的恒成立
不存在三个点,,,使得为等腰直角三角形
【解析】对于A,若,则,满足;若,则,满足;故函数为偶函数,选项A正确;
对于B,取,则,,故选项B错误;
对于C,若,则,满足;若,则,满足,故选项C正确;
对于D,要为等腰直角三角形,只可能如下四种情况:
①直角顶点在上,斜边在轴上,此时点,点的横坐标为无理数,则中点的横坐标仍然为无理数,那么点的横坐标也为无理数,这与点的纵坐标为1矛盾,故不成立;
②直角顶点在上,斜边不在轴上,此时点的横坐标为无理数,则点的横坐标也应为无理数,这与点的纵坐标为1矛盾,故不成立;
③直角顶点在轴上,斜边在上,此时点,点的横坐标为有理数,则中点的横坐标仍然为有理数,那么点的横坐标也应为有理数,这与点的纵坐标为0矛盾,故不成立;
④直角顶点在轴上,斜边不在上,此时点的横坐标为无理数,则点的横坐标也应为无理数,这与点的纵坐标为1矛盾,故不成立.
综上,不存在三个点,,,使得为等腰直角三角形,故选项D正确.故选:.
二、【热点解答题提升练】
5. (10分)(开放题) 已知,,分别为内角,,的对边,若同时满足下列四个条件中的三个:①;②;③;④.
(1)满足有解三角形的序号组合有哪些?
(2)在(1)所有组合中任选一组,并求对应的面积.
(若所选条件出现多种可能,则按计算的第一种可能计分)
【解析】(1)由①得,,
所以,
由②得,,
解得或(舍),所以,
因为,且,所以,所以,矛盾.
所以不能同时满足①,②.
故满足①,③,④或②,③,④;
(2)若满足①,③,④,
因为,所以,即.
解得.
所以的面积.
若满足②,③,④由正弦定理,即,解得,
所以,所以的面积.
6. (12分)已知数列的前项和为,,,.
(1)证明:数列为等比数列;
(2)已知曲线若为椭圆,求的值;
(3)若,求数列的前项和.
【解析】(1)对任意的,,则且,
所以,数列是以为首项,以为公比的等比数列;
(2)由(1)可得,.
当时,,
也适合上式,所以,.
由于曲线是椭圆,则,即,
,解得或;
(3),
,①
,②
①②得,
因此,.
7.(12分)如图,直角三角形所在的平面与半圆弧所在平面相交于,,,分别为,的中点, 是上异于,的点, .
(1)证明:平面平面;
(2)若点为半圆弧上的一个三等分点(靠近点)求二面角的余弦值.
【解析】(1)证明:因为半圆弧上的一点,所以.
在中,分别为的中点,所以,且.
于是在中, ,
所以为直角三角形,且.
因为,,所以.
因为,,,
所以平面.
又平面,所以平面平面.
(2)由已知,以为坐标原点,分别以垂直于、向量所在方向作为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,
则,,,,
,,.
设平面的一个法向量为,
则即,取,得.
设平面的法向量,
则即,取,得.
所以,
又二面角为锐角,所以二面角的余弦值为.
8. (12分)已知椭圆的右焦点为,是椭圆上一点,轴,.
(1)求椭圆的标准方程;
(2)若直线与椭圆交于、两点,线段的中点为,为坐标原点,且,求面积的最大值.
【解析】(1)设椭圆的焦距为,由题知,点,,
则有,,又,,,
因此,椭圆的标准方程为;
(2)当轴时,位于轴上,且,
由可得,此时;
当不垂直轴时,设直线的方程为,与椭圆交于,,
由,得.
,,从而
已知,可得.
.
设到直线的距离为,则,
.
将代入化简得.
令,
则.
当且仅当时取等号,此时的面积最大,最大值为.
综上:的面积最大,最大值为.
9. (12分) 某中学有位学生申请、、三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的.
(1)求恰有人申请大学的概率;
(2)求被申请大学的个数的概率分布列与数学期望.
【解析】(1)所有可能的方式有种,恰有人申请大学的申请方式有种,
从而恰有人申请大学的概率为;
(2)由题意可知,随机变量的可能取值有、、,
则,,.
所以,随机变量的分布列如下表所示:
.
10. (12分)已知函数,.
(1)求曲线在点处的切线方程;
(2)求函数的极小值;
(3)求函数的零点个数.
【解析】(1)因为,所以.
所以,.
所以曲线在点处的切线为;
(2)因为,令,得或.
列表如下:
0 | |||||
极大值 | 极小值 |
所以,函数的单调递增区间为和,单调递减区间为,
所以,当时,函数有极小值;
(3)当时,,且.
由(2)可知,函数在上单调递增,所以函数的零点个数为.
相关试卷
这是一份提升套餐练07 【新题型】新高考数学多选题与热点解答题组合练(原卷版)+(解析版),文件包含提升套餐练07-新题型新高考数学多选题与热点解答题组合练原卷版doc、提升套餐练07-新题型新高考数学多选题与热点解答题组合练解析版doc等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。
这是一份提升套餐练05 【新题型】新高考数学多选题与热点解答题组合练(原卷版)+(解析版),文件包含提升套餐练05-新题型新高考数学多选题与热点解答题组合练原卷版doc、提升套餐练05-新题型新高考数学多选题与热点解答题组合练解析版doc等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。
这是一份提升套餐练04 【新题型】新高考数学多选题与热点解答题组合练(原卷版)+(解析版),文件包含提升套餐练04-新题型新高考数学多选题与热点解答题组合练原卷版doc、提升套餐练04-新题型新高考数学多选题与热点解答题组合练解析版doc等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。