苏科版数学八年级上册月考模拟试卷八(含答案)
展开
这是一份苏科版数学八年级上册月考模拟试卷八(含答案),共22页。试卷主要包含了选一选,填一填,解答题等内容,欢迎下载使用。
苏科版数学八年级上册月考模拟试卷
一、选一选
1.在下面的汽车标志图形中,是轴对称图形有( )
A.1个 B.2个 C.3个 D.4个
2.有一个外角等于120°,且有两个内角相等的三角形是( )
A.不等边三角形 B.等腰三角形 C.等边三角形 D.不能确定
3.把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是( )
A. B. C. D.
4.已知图中的两个三角形全等,则∠α的度数是( )
A.72° B.60° C.58° D.50°
5.如图,AC=AD,BC=BD,则有( )
A.AB垂直平分CD B.CD垂直平分AB
C.AB与CD互相垂直平分 D.CD平分∠ACB
6.如图,直线l1、l2相交于点A,点B是直线外一点,在直线l1、l2上找一点C,使△ABC为一个等腰三角形.满足条件的点C有( )
A.2个 B.4个 C.6个 D.8个
二、填一填
7.的平方根是 .
8.若等腰三角形的两边长分别为3和4,则它的周长是 .
9.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= .
10.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为16,BC=7,则AB的长为 .
11.Rt△ABC中,∠ACB=90°,CA=CB,斜边AB=5cm,斜边上的高CD= cm.
12.如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有 个.
13.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B等于 .[来源:学&科&网]
14.如图,△ABC的周长为24cm,BC=10cm,AD为角平分线,若点D到AB边的距离为cm,则△ABC的面积为 cm2.
15.如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是 .
16.如图,△ABC中,∠ACB=90°,D为AB上任一点,过D作AB的垂线,分别交边AC、BC的延长线于E、F两点,∠BAC、∠BFD的平分线交于点I,AI交DF于点M,FI交AC于点N,连接BI.下列结论:①∠BAC=∠BFD;②∠ENI=∠EMI;③AI⊥FI;④∠ABI=∠FBI;其中正确结论的序号是 .
三、解答题
17.(1)计算: +|﹣5|﹣+(﹣2)0
(2)解方程(x﹣2)2=9.
18.作图题:
①如图:利用网格线作△ABC关于直线l对称的△A′B′C′,并在直线l上求作一点Q,使得QA+QC的和最短,请在直线上标出点Q位置.
②尺规作图:如图△ABC,请用尺规求作点P使得点P到AB、BC边的距离相等,且同时到A、C两点的距离相等,保留作图痕迹.
19.如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.
(1)求∠DAC的度数;
(2)求证:DC=AB.
20.如图,在△ABC中,M、N分别是BC与EF的中点,CF⊥AB,BE⊥AC.
求证:MN⊥EF.[来源:Zxxk.Com]
21.已知:如图,AB=AC,PB=PC,PD⊥AB,PE⊥AC,垂足分别为D、E.
证明:(1)PD=PE.
(2)AD=AE.
22.已知,如图,在△ABC中,AB=8cm,AC=4cm,△BAC的平分线AD与BC的垂直平分线DG交于点D,过点D的直线DE⊥AB于点E,DF⊥AC于点F(或AC延长线)
(1)求证:AE=AF;
(2)求证:BE=CF;
(3)求AE的长.
[来源:学,科,网Z,X,X,K]
23.如图①,已知点D在AB上,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,且M为EC的中点.
(1)连接DM并延长交BC于N,求证:CN=AD;
(2)求证:△BMD为等腰直角三角形;
(3)将△ADE绕点A逆时针旋转90°时(如图②所示位置),△BMD为等腰直角三角形的结论是否仍成立?若成立,请证明:若不成立,请说明理由.
参考答案
一、选一选
1.在下面的汽车标志图形中,是轴对称图形有( )
A.1个 B.2个 C.3个 D.4个
【解答】解:第一个图形不是轴对称图形,
第二个图形是轴对称图形,
第三个图形不是轴对称图形,
第四个图形是轴对称图形,
第五个图形是轴对称图形,
综上所述,是轴对称图形的有3个.
故选C.
2.有一个外角等于120°,且有两个内角相等的三角形是( )
A.不等边三角形 B.等腰三角形 C.等边三角形 D.不能确定
【解答】
解:当∠BAC的外角是120°时,
则∠BAC=60°,
∠B=∠C=(180°﹣∠BAC)=60°,
即∠BAC=∠B=∠C,
所以△ABC是等边三角形;
当∠ABC的外角是120°时,∠ABC=60°,
即∠C=∠ABC=60°,
∵∠BAC+∠ABC+∠C=180°,
∴∠BAC=60°,
∴∠BAC=∠B=∠C,
∴△ABC是等边三角形;
同样当∠ACB的外角是120°,也能推出△ABC是等边三角形;
故选C.
3.把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是( )
A. B. C. D.
【解答】解:当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边.再结合C点位置可得答案为C.
故选C.
4.已知图中的两个三角形全等,则∠α的度数是( )
A.72° B.60° C.58° D.50°
【解答】解:∵两个三角形全等,
∴∠α的度数是72°.
故选A.
5.如图,AC=AD,BC=BD,则有( )
A.AB垂直平分CD B.CD垂直平分AB
C.AB与CD互相垂直平分 D.CD平分∠ACB
【解答】解:∵AC=AD,BC=BD,
∴点A在CD的垂直平分线上,点B在CD的垂直平分线上,
∴AB垂直平分CD.
故选A.
6.如图,直线l1、l2相交于点A,点B是直线外一点,在直线l1、l2上找一点C,使△ABC为一个等腰三角形.满足条件的点C有( )
A.2个 B.4个 C.6个 D.8个
【解答】解:以A为圆心,AB长为半径画弧,交l1、l2于4个点;
以B为圆心,AB长为半径画弧交l1、l2于2个点,
再作AB的垂直平分线交l1、l2于2个点,
共有8个点,
故选:D.
二、填一填(2分×10=20分,请将答案写在答题纸上)
7.的平方根是 ± .
【解答】解:∵=3,
∴的平方根是±.
故答案为:±.
8.若等腰三角形的两边长分别为3和4,则它的周长是 10或11 .
【解答】解:①3是腰长时,三角形的三边分别为3、3、4,
能组成三角形,周长=3+3+4=10,
②3是底边长时,三角形的三边分别为3、4、4,
能组成三角形,周长=3+4+4=11,
综上所述,这个等腰三角形的周长是10或11.
故答案为:10或11.
9.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= 55° .
【解答】解:∵∠BAC=∠DAE,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
∴∠1=∠EAC,
在△BAD和△CAE中,
∴△BAD≌△CAE(SAS),
∴∠2=∠ABD=30°,
∵∠1=25°,
∴∠3=∠1+∠ABD=25°+30°=55°,
故答案为:55°.
10.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为16,BC=7,则AB的长为 9 .
【解答】解:∵DE是AB的中垂线
∴AE=BE,
∵△BCE的周长为16,
∴BC+CE+BE=BC+CE+AE=BC+AC=16,
∵BC=7,
∴AC=9,
∴AB=AC=9.
故答案为9.
11.Rt△ABC中,∠ACB=90°,CA=CB,斜边AB=5cm,斜边上的高CD= 2.5 cm.
【解答】解:∵∠ACB=90°,CA=CB,
∴△ABC斜边上的中线=2.5.
∵等腰三角形底边上的高线与底边上的中线重合,
∴CD=2.5cm.
故答案为:2.5cm.
12.如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有 4 个.
【解答】解:如图所示,有4个位置使之成为轴对称图形.[来源:Z.xx.k.Com]
故答案为:4.
13.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B等于 70°或20° .
【解答】解:根据△ABC中∠A为锐角与钝角,分为两种情况:
①当∠A为锐角时,
∵AB的垂直平分线与AC所在的直线相交所得到锐角为50°,
∴∠A=40°,
∴∠B===70°;
②当∠A为钝角时,
∵AB的垂直平分线与AC所在的直线相交所得到锐角为50°,
∴∠1=40°,
∴∠BAC=140°,
∴∠B=∠C==20°.
故答案为:70°或20°.
14.如图,△ABC的周长为24cm,BC=10cm,AD为角平分线,若点D到AB边的距离为cm,则△ABC的面积为 24 cm2.
【解答】解:过点D作DE⊥AB,DF⊥AC,
∵AD为角平分线,
∴DE=DF=cm,
∵△ABC的周长为24cm,BC=10cm,
∴AB+AC=14cm,
∴△ADB和△ADC的面积和=(AB+AC)×=24cm2.
∴△ABC的面积为24cm2.
故答案为:24.
15.如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是 50° .
【解答】解:连接BO,
∵∠BAC=50°,∠BAC的平分线与AB的中垂线交于点O,
∴∠OAB=∠ABO=25°,
∵等腰△ABC中,AB=AC,∠BAC=50°,
∴∠ABC=∠ACB=65°,
∴∠OBC=65°﹣25°=40°,
∵,
∴△ABO≌△ACO,
∴BO=CO,
∴∠OBC=∠OCB=40°,
∵点C沿EF折叠后与点O重合,
∴EO=EC,∠CEF=∠FEO,
∴∠CEF=∠FEO==50°,
故答案为:50°.
16.如图,△ABC中,∠ACB=90°,D为AB上任一点,过D作AB的垂线,分别交边AC、BC的延长线于E、F两点,∠BAC、∠BFD的平分线交于点I,AI交DF于点M,FI交AC于点N,连接BI.下列结论:①∠BAC=∠BFD;②∠ENI=∠EMI;③AI⊥FI;④∠ABI=∠FBI;其中正确结论的序号是 ①②③ .
【解答】解:∵∠ACB=90°,
∴∠DBF+∠BAC=90°,
∵FD⊥AB,
∴∠BDF=90°,
∴∠DBF+∠BFD=90°,
∴∠BAC=∠BFD,故①正确;
∵∠BAC=∠BFD,∠BAC、∠BFD的平分线交于点I,
∴∠EFN=∠EAM,
∵∠FEN=∠AEM,
∴∠ENI=∠EMI,故②正确;
∵由①知∠BAC=∠BFD,∠BAC、∠BFD的平分线交于点I,
∴∠MAD=∠MFI,∵∠AMD=∠FMI,
∴∠AIF=∠ADM=90°,即AI⊥FI,故③正确;
∵BI不是∠B的平分线,
∴∠ABI≠∠FBI,故④错误.
故答案为:①②③.
三、解答题(共68分)
17.(10分)(1)计算: +|﹣5|﹣+(﹣2)0
(2)解方程(x﹣2)2=9.
【解答】解:(1)原式=﹣3+5﹣6+1=﹣3
(2)(x﹣2)2=9,
x﹣2=±3,
x﹣2=3,或x﹣2=﹣3,
解得:x1=5,x2=﹣1.
18.(8分)作图题:
①如图:利用网格线作△ABC关于直线l对称的△A′B′C′,并在直线l上求作一点Q,使得QA+QC的和最短,请在直线上标出点Q位置.
②尺规作图:如图△ABC,请用尺规求作点P使得点P到AB、BC边的距离相等,且同时到A、C两点的距离相等,保留作图痕迹.
【解答】解:①如图1所示:△A′B′C′,点Q,即为所求;
②如图2所示:点P,即为所求.
19.(8分)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.
(1)求∠DAC的度数;
(2)求证:DC=AB.
【解答】(1)解:∵AB=AC,
∴∠B=∠C=30°,
∵∠C+∠BAC+∠B=180°,
∴∠BAC=180°﹣30°﹣30°=120°,
∵∠DAB=45°,
∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°;
(2)证明:∵∠DAB=45°,
∴∠ADC=∠B+∠DAB=75°,
∴∠DAC=∠ADC,
∴DC=AC,
∴DC=AB.
20.(8分)如图,在△ABC中,M、N分别是BC与EF的中点,CF⊥AB,BE⊥AC.
求证:MN⊥EF.
【解答】证明:如图,连接MF、ME,
∵MF、ME分别为Rt△FBC是和Rt△EBC斜边上的中线,
∴MF=ME=BC,
在△MEF中,MF=ME,点N是EF的中点,
∴MN⊥EF.
21.(8分)已知:如图,AB=AC,PB=PC,PD⊥AB,PE⊥AC,垂足分别为D、E.
证明:(1)PD=PE.
(2)AD=AE.
【解答】证明:(1)连接AP.
在△ABP和△ACP中,
,
∴△ABP≌△ACP(SSS).
∴∠BAP=∠CAP,
又∵PD⊥AB,PE⊥AC,垂足分别为D、E,
∴PD=PE(角平分线上点到角的两边距离相等).
(2)在△APD和△APE中,
∵,
∴△APD≌△APE(AAS),
∴AD=AE;
22.(12分)已知,如图,在△ABC中,AB=8cm,AC=4cm,△BAC的平分线AD与BC的垂直平分线DG交于点D,过点D的直线DE⊥AB于点E,DF⊥AC于点F(或AC延长线)
(1)求证:AE=AF;
(2)求证:BE=CF;
(3)求AE的长.
【解答】(1)证明:∵点D在∠BAC的平分线上,DE⊥AB,DF⊥AC,
∴DE=DF.
在Rt△AED与Rt△AFD中,
,
∴Rt△AED≌Rt△AFD(HL),
∴AE=AF;
(2)证明:连接BD,CD.
∵点D在BC的垂直平分线上,
∴DB=DC;
在Rt△DCF与Rt△DBE中,
,
∴Rt△DCF≌Rt△DBE(HL),
∴CF=BE;
(3)解:∵AB=8cm,AC=4cm,CF=BE,AE=AF=AC+CF,
∴AB=AE+BE=AC+BE+CF=AC+2BE,
∴BE=2cm,
∴AE=AB﹣BE=6cm.
23.(14分)如图①,已知点D在AB上,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,且M为EC的中点.
(1)连接DM并延长交BC于N,求证:CN=AD;
(2)求证:△BMD为等腰直角三角形;
(3)将△ADE绕点A逆时针旋转90°时(如图②所示位置),△BMD为等腰直角三角形的结论是否仍成立?若成立,请证明:若不成立,请说明理由.
【解答】(1)证明:如图1,
∵∠EDA=∠ABC=90°,
∴DE∥BC,
∴∠DEM=∠MCB,
在△EMD和△CMN中,
,
∴△EMD≌△CMN(ASA),
∴CN=DE,
∵AD=DE,
∴CN=AD;
(2)证明:由(1)得∴△EMD≌△CMN,
∴CN=AD,DM=MN,
∵BA=BC,
∴BD=BN,
∴△DBN是等腰直角三角形,且BM是底边的中线,
∴BM⊥DM,BM=DN=DM,
∴△BMD为等腰直角三角形;
(3)答:△BMD为等腰直角三角形的结论仍成立,
证明:如图2,作CN∥DE交DM的延长线于N,连接BN,
∴∠E=∠MCN=45°,
∵∠DME=∠NMC,EM=CM,
∴△EMD≌△CMN(ASA),
∴CN=DE=DA,MN=MD,
又∵∠DAB=180°﹣∠DAE﹣∠BAC=90°,
∠BCN=∠BCM+∠NCM=45°+45°=90°,
∴∠DAB=∠BCN,[来源:学科网]
在△DBA和△NBC中,
,
∴△DBA≌△NBC(SAS),
∴∠DBA=∠NBC,DB=BN,
∴∠DBN=∠ABC=90°,
∴△DBN是等腰直角三角形,且BM是底边的中线,
∴BM⊥DM,∠DBM=∠DBN=45°=∠BDM,
∴△BMD为等腰直角三角形.
相关试卷
这是一份苏科版数学八年级上册月考模拟试卷03(含答案),共31页。试卷主要包含了细心选一选,精心填一填,解答题等内容,欢迎下载使用。
这是一份苏科版数学八年级上册月考模拟试卷07(含答案),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份苏科版数学八年级上册月考模拟试卷十(含答案),共25页。试卷主要包含了选择题,填空题,操作与思考,解答题等内容,欢迎下载使用。