初中数学2.4 线段、角的轴对称性教学设计及反思
展开2.4 线段、角的轴对称性(3)
教学目标
1.探索并掌握角平分线的性质定理和逆定理;
2.能利用所学知识提出问题并能解决生活中的实际问题;
3.能利用基本事实有条理的进行证明,做到每一步有根有据;
4.经历探索角的轴对称的过程,在“操作——探究——归纳——证明”的过程中培养思考的严谨性和表达的条理性.
教学重点
利用角的轴对称性探索角平分线的性质.
教学难点
理解“点在角平分线上”的证明方法.
教学过程(教师)
学生活动
设计思路
开场白
同学们,上节课我们充分研究了线段的轴对称性,那么另一个基本图形“角”的轴对称性又如何呢?与线段有什么异同和联系呢?下面,我们就进入今天愉快的数学探究之旅.
进入状态,兴致盎然,跃跃欲试.
点明课题,揭示角类比线段的探究方法.
实践探索一:
在一张薄纸上画∠AOB,它是轴对称图形吗?如果是,对称轴在哪里?为什么?
积极思考,动手操作,提出猜想.
让学生动手操作,感知角的轴对称性,猜想对称轴的位置,为后续研究作铺垫,同时激发学生的学习兴趣.
实践探索二
如图2-23,直线OC是∠AOBO
A
B
C
的角平分线,如果沿直线OC翻折,你有什么发现?角平分线是线段的对称轴吗?
动手操作,验证猜想,描述发现,明确结论.
在操作中感知角的轴对称性,培养口头表达能力.
实践探索三
角平分线是否也有像线段垂直平分线一样的特殊性质呢?
如图,在∠AOB的角平分线OC任意取一点P,PD⊥OA,PE⊥OB,PD与PE相等吗?为什么?
O
A
B
C
P
D
E
通过证明,你发现了什么?用语言描述你得到的结论.
学生独立思考、积极探究.方法不一,具体如下:
1.利用“AAS”证明△ODP≌
△OEP后,说明PD与PE相等.
2.利用角的轴对称性和基本事
实“过一点有且只有一条直线与已知直线垂直”,说明PD与PE相等.
问题虽然比较简单,学生都能感受到PD与PE相等,但是要让学生进行推理说明还是有困难的,要提示学生从角平分线的定义入手,说明角相等,再结合证明两个角相等的思路,让学生寻找到演绎推理的过程,培养学生的动手能力和探索精神,为下面的证明积累经验.
总结
角平分线上的点有什么特点?
讨论后共同小结:
角平分线上的点到角两边的距离相等.
师生互动,锻炼学生的口头表达能力,培养学生勇于发表自己看法的能力.
实践探索四
如果任意一个点在角平分线上,那么这个点到这个角的两边距离相等.反过来,结合上节课所学,你有什么猜想?
如图2-26,若点Q在∠AOB内部,QD⊥O
A
B
Q
D
E
OA,QE⊥OB,且QD=QE,点Q在∠AOB的角平分线上吗?为什么?
通过上述探索,你得到了什么结论?
教师利用几何画板验证.
1. 猜想角平分线性质定理的逆定理.
2.学生证明逆定理.
连接OQ,利用HL证明三角形全等,继而得到OQ平分∠AOB.
3.学生讨论、归纳得到角平分线性质定理的逆定理:角的内部到角两边距离相等的点在角的平分线上.
教师提示问题,帮助学生利用类比学习法合理猜想,培养学生的逆向思维能力.
逆定理的证明,通过引导学生理解“点在线上”的证法基础上,明确辅助线,培养其分析问题和演绎推理的能力.
让学生感受角平分线点的共性,几何画板的一般性图形验证,较好地进行了图形证明.
例1
如图,在△ABC中,∠ABC和∠BAC的角平分线交于点O,OD⊥BC,OE⊥AC,OF⊥AB,垂足分别为D、E、F.
(1)OD与OF相等吗?为什么?
(2 OE与OF相等吗?为什么?
(3)OD与OE相等吗?为什么?
(4)OC平分∠ACB吗? 为什么?
学生思考、解答.
对任意三角形,存在一个点,这个点到三角形的三边距离相等;这个点是任意两个内角的平分线的交点。
例2
如图,ΔABC中,∠C=90,AD平分∠BAC交BC于D,若BC=21cm,且CD:BD=2:5。求点D到AB的距离。
动手画一画,理解点到直线的距离.
对三角形角平分线的性质进行简单的应用.
画一画
已知∠AOB和C、D两点,请在图中标出一点E,使得点E到OA、OB的距离相等,而且E点到C、D的距离也相等。
学生动手操作,利用角平分性的性质和线段垂直平分线的性质.
对角平分性的性质和线段垂直平分线的性质的灵活应用.
小结
1.经历了画图、折纸、猜想、归纳的活动过程,探索得到了角的轴对称性:角是轴对称图形,对称轴是角平分线所在的直线.
2.本节课我们还证明了角平分线的性质定理:角平分线上的点到角的两边的距离相等;反过来,角的内部到角的两边距离相等的点在角的平分线上,从中我们可以发现图形的位置关系与数量关系的内在联系,你能举例说明这种内在的联系吗?
学生讨论、小结.
帮助学生及时归纳所学,纳入原有知识体系中.
布置作业
课本P58习题2.4,分析第7、8题的思路,任选1题写出过程.
学生根据自身实际情况,选题作业.
实行作业分层,便于不同发展水平的学生自我发展.
初中数学苏科版八年级上册2.4 线段、角的轴对称性教学设计: 这是一份初中数学苏科版八年级上册2.4 线段、角的轴对称性教学设计,共5页。
初中数学2.4 线段、角的轴对称性教案: 这是一份初中数学2.4 线段、角的轴对称性教案,共3页。教案主要包含了教学目标,教学重点,教与学互动设计等内容,欢迎下载使用。
初中苏科版第二章 轴对称图形2.4 线段、角的轴对称性教案及反思: 这是一份初中苏科版第二章 轴对称图形2.4 线段、角的轴对称性教案及反思,共2页。教案主要包含了教学目标,教学重难点,教学过程等内容,欢迎下载使用。