- 高中数学第三章排列组合与二项式定理3.1.1.2基本计数原理课时作业含解析新人教B版选择性必修第二册 练习 试卷 0 次下载
- 高中数学第三章排列组合与二项式定理3.1.2.1排列与排列数课时作业含解析新人教B版选择性必修第二册 练习 试卷 0 次下载
- 高中数学第三章排列组合与二项式定理3.1.2.2排列数的应用课时作业含解析新人教B版选择性必修第二册 练习 试卷 0 次下载
- 高中数学第三章排列组合与二项式定理3.1.3.1组合与组合数及组合数性质课时作业含解析新人教B版选择性必修第二册 练习 试卷 0 次下载
- 高中数学第三章排列组合与二项式定理3.1.3.2组合数的应用课时作业含解析新人教B版选择性必修第二册 练习 试卷 0 次下载
高中数学人教B版 (2019)选择性必修 第二册3.1.1 基本计数原理随堂练习题
展开1.5名同学去听同时进行的4个课外知识讲座,每个同学可自由选择,且必须选择一个知识讲座,则不同的选择种数是( )
A.54B.45
C.5×4×3×2 D.5×4
2.已知集合M={1,-2,3},N={-4,5,6,7},从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是( )
A.18 B.17
C.16 D.10
3.同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人写的贺年卡,则四张贺年卡不同的分配方式有( )
A.12种 B.9种
C.8种D.6种
4.已知x∈{1,2,3,4},y∈{5,6,7,8},则xy可表示不同值的个数为( )
A.2 B.4
C.8 D.15
二、填空题
5.小张正在玩一款种菜的游戏,他计划从仓库里的玉米、土豆、茄子、辣椒、胡萝卜这5种种子中选出4种分别种植在四块不同的空地上(一块空地只能种植一种作物),若小张已决定在第一块空地上种茄子或辣椒,则不同的种植方案共有________种.
6.从集合{0,1,2,3,5,7,11}中任取3个不同元素分别作为直线方程Ax+By+C=0中的A,B,C,所得直线经过坐标原点的有________条.
7.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有________种.
三、解答题
8.如图所示,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,且两端的格子的颜色也不同,不同的涂色方法共有多少种?(用数字作答)
9.用数字1,2,3,4,5,6组成无重复数字的三位数.
(1)能组成多少个三位数;
(2)把这些数从小到大排列,求第89个数的值.
[尖子生题库]
10.甲、乙两人进行乒乓球比赛,采取五局三胜制,即先赢三局者获胜,决出胜负为止,则所有可能出现的情形(两人输赢局数的不同视为不同情形)共有( )
A.10种 B.15种
C.20种 D.30种
课时作业(二) 基本计数原理的应用
1.解析:5名同学每人都选一个课外知识讲座,则每人都有4种选择,由分步乘法计数原理知共有4×4×4×4×4=45种选择.
答案:B
2.解析:分两类.
第一类:M中的元素作横坐标,N中的元素作纵坐标,则在第一、二象限内的点有3×3=9(个);
第二类:N中的元素作横坐标,M中的元素作纵坐标,则在第一、二象限内的点有4×2=8(个).
由分类加法计数原理,共有9+8=17(个)点在第一、二象限.
答案:B
3.解析:设四张贺卡分别记为A,B,C,D.由题意,某人(不妨设A卡的供卡人)取卡的情况有3种,据此将卡的分配方式分为三类,对于每一类,其他人依次取卡分步进行,为了避免重复或遗漏,我们用“树状图”表示如下:
所以共有9种不同的分配方式,故选B.
答案:B
4.解析:x的取值共有4个,y的取值也有4个,则xy共有4×4=16个积,但是由于3×8=4×6,所以xy共有16-1=15(个)不同值,故选D.
答案:D
5.解析:当第一块地种茄子时,有4×3×2=24种不同的种法;当第一块地种辣椒时,有4×3×2=24种不同的种法,故共有48种不同的种植方案.
答案:48
6.解析:因为过原点的直线常数项为0,所以C=0,从集合中的6个非零元素中任取一个作为系数A,有6种方法,再从其余的5个元素中任取一个作为系数B,有5种方法,由分步乘法计数原理得,适合条件的直线共有1×6×5=30(条).
答案:30
7.解析:分三类:若甲在周一,则乙丙有4×3=12种排法;
若甲在周二,则乙丙有3×2=6种排法;
若甲在周三,则乙丙有2×1=2种排法.
所以不同的安排方法共有12+6+2=20种.
答案:20
8.解析:不妨将图中的4个格子依次编号为①②③④,当①③同色时,有6×5×1×5=150种方法;当①③异色时,有6×5×4×4=480种方法.所以共有150+480=630种方法.
9.解析:(1)完成这件事需要分别确定百位、十位和个位数,可以先确定百位,再确定十位,最后确定个位,因此要分步相乘.
第一步:确定百位数,有6种方法.
第二步:确定十位数,有5种方法.
第三步:确定个位数,有4种方法.
根据分步乘法计数原理,共有
N=6×5×4=120个三位数.
(2)这些数中,百位是1,2,3,4的共有4×5×4=80个,
百位是5的三位数中,十位是1或2的有4+4=8个,
故第88项为526,故从小到大第89个数为531.
10.解析:由题意知,比赛局数最少为3局,至多为5局.当比赛局数为3局时,情形为甲或乙连赢3局,共2种;当比赛局数为4局时,若甲赢,则前3局中甲赢2局,最后一局甲赢,共有3种情形;同理,若乙赢,则也有3种情形,所以共有6种情形;当比赛局数为5局时,前4局,甲、乙双方各赢2局,最后一局胜出的人赢,若甲前4局赢2局,共有赢取第1、2局,1、3局,1、4局,2、3局,2、4局,3、4局六种情形,所以比赛局数为5局时共有2×6=12(种),综上可知,共有2+6+12=20(种).故选C.
答案:C
高中数学人教B版 (2019)选择性必修 第二册3.1.1 基本计数原理当堂达标检测题: 这是一份高中数学人教B版 (2019)选择性必修 第二册3.1.1 基本计数原理当堂达标检测题,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教B版 (2019)选择性必修 第二册3.3 二项式定理与杨辉三角复习练习题: 这是一份人教B版 (2019)选择性必修 第二册3.3 二项式定理与杨辉三角复习练习题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教B版 (2019)选择性必修 第二册3.3 二项式定理与杨辉三角课后作业题: 这是一份人教B版 (2019)选择性必修 第二册3.3 二项式定理与杨辉三角课后作业题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。