|课件下载
搜索
    上传资料 赚现金
    数学新课标人教A版必修1教学课件:1.3.2.2 第2课时 函数奇偶性的应用课件
    立即下载
    加入资料篮
    数学新课标人教A版必修1教学课件:1.3.2.2 第2课时 函数奇偶性的应用课件01
    数学新课标人教A版必修1教学课件:1.3.2.2 第2课时 函数奇偶性的应用课件02
    数学新课标人教A版必修1教学课件:1.3.2.2 第2课时 函数奇偶性的应用课件03
    数学新课标人教A版必修1教学课件:1.3.2.2 第2课时 函数奇偶性的应用课件04
    数学新课标人教A版必修1教学课件:1.3.2.2 第2课时 函数奇偶性的应用课件05
    数学新课标人教A版必修1教学课件:1.3.2.2 第2课时 函数奇偶性的应用课件06
    数学新课标人教A版必修1教学课件:1.3.2.2 第2课时 函数奇偶性的应用课件07
    数学新课标人教A版必修1教学课件:1.3.2.2 第2课时 函数奇偶性的应用课件08
    还剩21页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中1.3.2奇偶性教学ppt课件

    展开
    这是一份高中1.3.2奇偶性教学ppt课件,共29页。PPT课件主要包含了f-x=fx,增函数,最小值-M等内容,欢迎下载使用。

    第2课时 函数奇偶性的应用
    1.函数奇偶性的概念(1)偶函数的定义如果对于函数f(x)的定义域内的____一个x,都 有____________,那么称函数y=f(x)是偶函数.(2)奇函数的定义如果对于函数f(x)的定义域内的_____一个x,都 有_____________,那么称函数y=f(x)是奇函数.
    f(-x)=-f(x)
    1.奇、偶函数的图象(1)偶函数的图象关于____对称.(2)奇函数的图象关于____对称.2.函数奇偶性与单调性(最值)之间的关系(1)若奇函数f(x)在[a,b]上是增函数,且有最 大值M,则f(x)在[-b,-a]上是______,且有 ___________.(2)若偶函数f(x)在(-∞,0)上是减函数,则f(x) 在(0,+∞)上是______.
    解析: 由偶函数定义,f(-x)=f(x)知,f(x)=-x2,f(x)=x2是偶函数,又在(0,+∞)上是减函数,∴f(x)=-x2符合条件,故选B.答案: B
    2.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=(  )A.-2 B.2C.-98 D.98解析: ∵f(x+4)=f(x),∴f(7)=f(3+4)=f(3)=f[4+(-1)]=f(-1).又∵f(-x)=-f(x),∴f(-1)=-f(1)=-2×12=-2,∴f(7)=-2,故选A.答案: A
    3.已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2x,则f(x)在R上的表达式为________.
    4.函数y=f(x)是偶函数,且在(-∞,0]上为增函数,试比较f(-2)与f(1)的大小.解析: ∵f(x)是偶函数,∴f(1)=f(-1)又∵f(x)在(-∞,0]上为增函数,-2<-1∴f(-2)<f(-1)=f(1)即f(-2)<f(1)
    [解题过程] 利用奇函数图象的性质,画出函数在[-5,0]上的图象,直接从图象中读出信息.由原函数是奇函数,所以y=f(x)在[-5,5]上的图象关于坐标原点对称,由y=f(x)在[0,5]上的图象,知它在[-5,0]上的图象,如图所示.由图象知,使函数值y<0的x的取值集合为(-2,0)∪(2,5).
    [题后感悟] 本题利用奇函数图象的特点,作出函数在区间[-5,0]上的图象,利用图象求出满足条件的自变量x的取值集合.数形结合是研究函数的重要方法,画函数图象是学习数学必须掌握的一个重要技能,并能利用函数图象理解函数的性质.
    解析: 因为函数y=f(x)为偶函数,其图象关于y轴对称,故保留y=f(x)在(-∞,0]上的图象,在[0,+∞)上作y=f(x)关于y轴对称的图象,如图所示,即得函数y=f(x),x∈R的图象.由图象知f(3)=-2,f(1)=-1,所以f(1)>f(3).
    [题后感悟] 此类问题的一般解法是:(1)“求谁则设谁”,即在哪个区间求解析式,x就设在哪个区间内.(2)要利用已知区间的解析式进行代入.(3)利用f(x)的奇偶性写出-f(x)或f(-x),从而解出f(x).
    [题后感悟] 解决此类问题时一定要充分利用已知的条件,把已知不等式转化成f(x1)>f(x2)或f(x1)1.奇、偶函数的图象(1)若一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形.反之,如果一个函数的图象是以坐标原点为对称中心的对称图形,则这个函数是奇函数,这也成为我们由图象判定奇函数的方法.(2)若一个函数是偶函数,则它的图象是以y轴为对称轴的对称图形.反之,如果一个函数的图象关于y轴对称,则这个函数是偶函数,这也是由图象判定偶函数的方法.[注意] 由图象可知,奇函数在对称区间上单调性一致,偶函数在对称区间上单调性相反.
    (3)由于奇函数、偶函数图象的对称性,我们可以由此得到作函数图象的简便方法,如作函数y=|x|的图象,因为该函数为偶函数,故需先作出x≥0时的图象,利用函数图象关于y轴对称即可作出x≤0时的图象.
    ◎已知函数f(x)(x∈R)是奇函数,且当x>0时,f(x)=2x-3,求函数f(x)的解析式.
    【错因】 忽略了定义域为R的条件,漏掉了x=0的情况.
    练规范、练技能、练速度
    相关课件

    数学必修 第一册3.1.3 函数的奇偶性课堂教学课件ppt: 这是一份数学必修 第一册3.1.3 函数的奇偶性课堂教学课件ppt,共17页。

    高中人教版新课标A2.1.2指数函数及其性质教学ppt课件: 这是一份高中人教版新课标A2.1.2指数函数及其性质教学ppt课件,共46页。PPT课件主要包含了0+∞,增函数,减函数,增区间,答案A等内容,欢迎下载使用。

    人教版新课标A必修12.2.2对数函数及其性质教学ppt课件: 这是一份人教版新课标A必修12.2.2对数函数及其性质教学ppt课件,共45页。PPT课件主要包含了y=x04,0+∞,y=xα,答案A,答案C,答案①⑤,答案B等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map