高中数学人教B版 (2019)选择性必修 第三册6.3 利用导数解决实际问题测试题
展开专题七 利用导数解决实际问题
基本知识点
1.利用导数解决有关函数的最大值、最小值的实际问题,体现在以下几个方面:
(1)与几何有关的最值问题(求几何图形或几何体的面积与体积的最值);
(2)与物理学有关的最值问题;
(3)与利润及其成本有关的最值问题.
2.优化问题:生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.
3.利用导数求优化问题的步骤.
(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x);
(2)求函数的导数f′(x),解方程f′(x)=0;
(3)比较函数在区间端点和使f′(x)=0的点的函数值的大小.最大(小)者为最大(小)值.
例题分析
一、面积容积最大最小问题
例1 用长为18 m的钢条围成一个长方体的框架,要求长方体的长与宽之比为2∶1,则该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?
(对应训练)横梁的强度和它的矩形断面的宽成正比,并和高的平方成正比,要将直径为d的圆木锯成强度最大的横梁,问断面的高和宽应是多少?
二、费用最省(成本最低)问题
例2 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及f(x)的表达式;
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
(对应训练)要设计一个容积为V的有盖圆柱形储油罐,已知侧面积的单位面积造价是底面积造价的一半;而储油罐盖的单位面积造价又是侧面积造价的一半,问储油罐的半径r和高h之比为何值时造价最省?
三、利润最大问题
例3 某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件.
(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润L最大?并求出利润L的最大值Q(a).
(对应训练一)甲、乙两地相距400千米,一汽车从甲地匀速行驶到乙地,速度不得超过100千米/时.已知该汽车每小时的运输成本t(元)关于速度x(千米/时)的函数关系式是t=x4-x3+15x.
(1)当汽车以60千米/时的速度匀速行驶时,全程运输成本为多少元?
(2)为使全程运输成本最少,汽车应以多少速度行驶?并求出此时运输成本的最小值.
(对应训练二)某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低额x(单位:元,0≤x≤21)的平方成正比.已知商品单价降低2元时,每星期多卖出24件.
(1)将一个星期的商品销售利润表示成x的函数;
(2)如何定价才能使一个星期的商品销售利润最大?
专题训练
1.把一段长为12 cm的细铁丝锯成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是( )
A.cm2 B.4 cm2 C.3 cm2 D.2 cm2
2.若一球的半径为r,作内接于球的圆柱,则圆柱侧面积的最大值为( )
A.2πr2 B.πr2 C.4πr2 D.πr2
3.某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元,已知总收益R与年产量x的关系是R(x)=则总利润最大时,每年生产的产品是( )
A.100 B.150 C.200 D.300
4.某公司生产一种产品,固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R与年产量x(0≤x≤390)的关系是R(x)=-+400x(0≤x≤390),则当总利润最大时,每年生产的产品单位数是( )
A.150 B.200 C.250 D.300
5.甲、乙两地相距240 km,汽车从甲地以速度v(km/h)匀速行驶到乙地.已知汽车每小时的运输成本由固定成本和可变成本组成,固定成本为160元,可变成本为v3元.为使全程运输成本最小,汽车应以________km/h的速度行驶.
6.圆柱形金属饮料罐的表面积为定值S,要使它的容积最大,它的高h与底面半径R的比应为________.
7.某厂生产x件产品的总成本为C万元,产品单价为P万元,且满足C=1 200+x3,P=,则当x=________时,总利润最高.
8.某银行准备设一种新的定期存款业务,经预测,存款额与存款利率的平方成正比,比例系数为k(k>0),贷款的利率为4.8%,假设银行吸收的存款能全部放贷出去.若存款利率为x(x∈(0,4.8%)),则使银行获得最大收益的存款利率为________.
9.如图,内接于抛物线y=1-x2的矩形ABCD,其中A,B在抛物线上运动,C,D在x轴上运动,则此矩形的面积的最大值是________.
10.一个帐篷,它下部的形状是高为1 m的正六棱柱,上部的形状是侧棱长为3 m的正六棱锥(如图所示).当帐篷的顶点O到底面中心O1的距离为_________ m时,帐篷的体积最大.
11.如图,内接于抛物线y=1-x2的矩形ABCD,其中A,B在抛物线上运动,C,D在x轴上运动,则此矩形的面积的最大值是________.
12.一艘轮船在航行中每小时的燃料费和它的速度的立方成正比.已知速度为每小时10海里时,燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问轮船的速度是多少时,航行1海里所需的费用总和最小?
13.某集团为了获得更大的收益,每年要投入一定的资金用于广告促销,经调查,每年投入广告费t(百万元),可增加销售额约为-t2+5t(百万元)(0≤t≤3).
(1)若该公司将当年的广告费控制在3百万元之内,则应投入多少广告费,才能使该公司由此获得的收益最大?
(2)现该公司准备共投入3百万元,分别用于广告促销和技术改造,经预测,每投入技术改造费x百万元,可增加的销售额约为-x3+x2+3x(百万元).请设计一个资金分配方案,使该公司由此获得的收益最大.(收益=销售额-投入)
14.统计表明某型号汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数为y=x3-x+8(0<x<120).
(1)当x=64千米/小时时,行驶100千米耗油量多少升?
(2)若油箱有22.5升油,则该型号汽车最多行驶多少千米?
微专题 利用导数解决实际问题 学案——2023届高考数学一轮《考点·题型·技巧》精讲与精练: 这是一份微专题 利用导数解决实际问题 学案——2023届高考数学一轮《考点·题型·技巧》精讲与精练,共42页。
人教B版 (2019)选择性必修 第三册6.2.2 导数与函数的极值、最值精练: 这是一份人教B版 (2019)选择性必修 第三册6.2.2 导数与函数的极值、最值精练,文件包含专题四导数与函数的极值-2020-2021学年高中数学专题题型精讲精练2019人教B版选择性必修第三册原卷版doc、专题四导数与函数的极值-2020-2021学年高中数学专题题型精讲精练2019人教B版选择性必修第三册解析版doc等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
高中数学人教B版 (2019)选择性必修 第三册6.3 利用导数解决实际问题达标测试: 这是一份高中数学人教B版 (2019)选择性必修 第三册6.3 利用导数解决实际问题达标测试,文件包含专题六利用导数求恒成立问题-2020-2021学年高中数学专题题型精讲精练2019人教B版选择性必修第三册原卷版doc、专题六利用导数求恒成立问题-2020-2021学年高中数学专题题型精讲精练2019人教B版选择性必修第三册解析版doc等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。