所属成套资源:湘教版数学九年级上册 同步课时练习(含答案)
初中数学湘教版九年级上册第4章 锐角三角函数4.4 解直接三角形的应用同步练习题
展开
这是一份初中数学湘教版九年级上册第4章 锐角三角函数4.4 解直接三角形的应用同步练习题,共7页。试卷主要包含了5 m B等内容,欢迎下载使用。
一、选择题
1.如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4 m,测得仰角为60°,已知小敏同学身高(AB)为1.6 m,则这棵树的高度约为(结果精确到0.1 m,≈1.73)( )
A.3.5 m B.3.6 m C.4.3 m D.5.1 m
2.如图,在地面上的点A处测得树顶B的仰角为α度,AC=7m,则树高BC为(用含α的代数式表示)( )
A.7sinα B.7csα C.7tanα D.
3.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端O点30米的B处,测得树顶4的仰角∠ABO为α,则树OA的高度为( )
A.米 B.30sinα米 C.30tanα米 D.30csα米
4.如图,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长是( )
A.10m B.m C.15m D.m
5.如图,是意大利著名的比萨斜塔,塔身的中心线与垂直中心线的夹角A约为5゜28′,塔身AB的长为54.5m,则塔顶中心偏离垂直中心线的距离BC是( )
A.54.5×sin5°28′m B.54.5×cs5°28′m
C.54.5×tan5°28'm D. m
6.一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为( )
A.10海里/小时 B.30海里/小时 C.20海里/小时 D.30海里/小时
7.如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2.下列说法正确的是( )
A.AB的长为400米; B.AF的长为10米;
C.填充的土石方为19200立方米; D.填充的土石方为384立方米
8.如图,一根电线杆的接线柱部分AB在阳光下的投影CD的长为1米,太阳光线与地面的夹角∠ACD=60°,则AB的长为( )
A.米 B.米 C.米 D.米
9.如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取PA的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽PA等于( )
A.100sin 35°米 B.100sin 55°米
C.100tan 35°米 D.100tan 55°米
10.如图,将一个 Rt△ABC 形状的楔子从木桩的底端点 P 沿水平方向打入木桩底下,使木桩向上运动.已知楔子斜面的倾斜角为 15°,若楔子沿水平方向前进 6cm(如箭头所示),则木桩上升了( )
A.6sin15°cm B.6cs15°cm C.6tan15°cm D.cm
二、填空题
11.如图,一根竖直的木杆在离地面3.1m处折断,木杆顶端落在地面上,且与地面成38°角,
则木杆折断之前高度约为 m.
(参考数据:sin38°≈0.62,cs38°≈0.79,tan38°≈0.78)
12.如图所示,九(1)班数学课外活动小组在河边测量河宽AB(这段河流的两岸平行),他们在点C测得∠ACB=30°,点D处测得∠ADB=60°,CD=80m,则河宽AB约为 m.
(结果保留整数,≈1.73).
13.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,那么山高AD为 米(结果保留整数,测角仪忽略不计)
14.如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为30°,看这栋高楼底部C的俯角为60°,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为 米.
15.从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是 .
16.某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,则此时轮船与小岛P的距离BP=__________海里.
三、解答题
17.如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度.小宇同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处50米远的B处测得∠CBD=30°,请你根据这些数据算出河宽.(精确到0.01米,参考数据≈1.414,≈1.732)
18.如图,已知长江路西段与黄河路的夹角为150°,长江路东段与淮河路的夹角为135°,黄河路全长AC=20km,从A地道B地必须先走黄河路经C点后再走淮河路才能到达,城市道路改造后,直接打通长江路(即修建AB路段).问:打通长江路后从A地道B地可少走多少路程?(参考数据:≈1.4,≈1.7)
19.鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,AB=4km,∠ABD=105°,求BD的长.
答案解析
1.D
2.C
3.C
4.A
5.A
6.D
7.C
8.B
9.C;
10.C;
11.答案为:8.1.
12.答案为:69.
13.答案为:137.
14.答案为:160.
15.答案为:(6+6)米.
16.答案是:7
17.解:过C作CE⊥AB于E,设CE=x米,在Rt△AEC中:∠CAE=45°,AE=CE=x
在Rt△BCE中:∠CBE=30°,BE=CE=x,∴x=x+50解之得:x=25+25≈68.30.
答:河宽为68.30米.
18.解:如图所示:过点C作CD⊥AB于点D,
在Rt△ACD中,∠CAD=30°,AC=20km,则CD=10km,AD=10km,
在Rt△BCD中,∠CBD=45°,CD=10km,故BD=10km,BC=10km,
则AC+BC﹣AB=20+10﹣10﹣10≈7(km),
答:打通长江路后从A地道B地可少走7km的路程.
19.解:作BE⊥AD于点E,
∵∠CAB=30°,AB=4km,
∴∠ABE=60°,BE=2km,
∵∠ABD=105°,
∴∠EBD=45°,
∴∠EDB=45°,
∴BE=DE=2km,
∴BD==2km,
即BD的长是2km.
相关试卷
这是一份初中数学湘教版九年级上册第4章 锐角三角函数4.4 解直接三角形的应用巩固练习,共10页。试卷主要包含了如图,厂房屋顶人字形,5米 D,如图,梯子等内容,欢迎下载使用。
这是一份湘教版九年级上册4.4 解直接三角形的应用同步测试题,共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份初中4.4 解直接三角形的应用优秀同步测试题,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。