







人教版九年级上册第二十四章 圆24.3 正多边形和圆评课ppt课件
展开
这是一份人教版九年级上册第二十四章 圆24.3 正多边形和圆评课ppt课件,共26页。PPT课件主要包含了图片欣赏,新课讲解,多边形是正多边形,中心角,边心距,课堂练习,知一求二,抢答题,外接圆,内切圆等内容,欢迎下载使用。
问题1.什么样的图形是正多边形?
各边相等,各角也相等的多边形是正多边形,如果一个正多边形有n条边,那么这个多边形叫正n边形
问题2.正多边形具有轴对称、中心对称么?
正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正多边形的中心
边数为偶数的正多边形是中心对称图形,它的中心就是对称中心
问题边形内角和公式:多边形外角和是______正n边的一个外角为________°
PPT模板:素材:PPT背景:图表:PPT下载:教程: 资料下载:范文下载:试卷下载:教案下载:PPT论坛: PPT课件:语文课件:数学课件:英语课件:美术课件:科学课件:物理课件:化学课件:生物课件:地理课件:历史课件:
思考:将⊙O分成相等的5段弧,把这些等分点顺次连接起来,得到的是什么图形?为什么?
问题4.正多边形与圆有何关系?
如图,把⊙O分成把⊙O分成相等的5段弧,依次连接各分点得到正五边形ABCDE.
∴AB=BC=CD=DE=EA,
同理∠B=∠C=∠D=∠E.
又五边形ABCDE的顶点都在⊙O上,
∴ 五边形ABCD是⊙O的内接正五边形, ⊙O是五边形ABCD的外接圆.
我们以圆内接正五边形为例证明.
∵弧AB=弧BC=弧CD=弧DE=弧EA
弧BCE=弧CDA=3弧AB
你知道正多边形与圆的关系吗?
正多边形和圆的关系非常密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.
2. 各边相等的圆内接多边形是正多边形?各角都相等的圆内接多边形呢?如果是,说明为什么;如果不是,举出反例.
弦相等(多边形的边相等)弧相等— 圆周角相等(多边形的角相等)
正多边形每一边所对的圆心角叫做正多边形的中心角.
我们把一个正多边形的外接圆的圆心叫做这个正多边形的中心.
外接圆的半径叫做正多边形的半径.
中心到正多边形的一边的距离叫做正多边形的边心距.
正多边形中的有关概念:
既是外接圆的圆心,也是内切圆的圆心
每条边的边心距都有什么关系?
那点O除了是外接圆的圆心以外还能是什么?
例1.正五边形的一个内角的度数是_______,中心角是______正n边形的一个内角的度数是____________;中心角是___________;正多边形的中心角与外角的大小关系是________.
看到这个式子想到什么了?
例2 如图29-5-4,△ABC为⊙O的内接正三角形.如果的⊙O半径为r,求这个正三角形的边长和边心距.
解:如图29-5-5,连接OB,过点O作OD⊥BC,垂足为D.在Rt△OBD中,∵∠OBD=30°,OB=r,∴OD= ,BD= ,BC=2BD= .即这个正三角形的边长为 ,边心距为 .
1.若正三角形的半径为4,则它的边心距是 ____,边长是_____.
2.有一个亭子,它的地基是半径为4m的正六边形(如图)求地基的周长和面积.
若正多边形的周长为l,边心距为r,则:S=_________.
1.O是正与 的圆心.
△ABC的中心,它是△ABC的
2、OB叫正△ABC的 它是正△ABC的 的半径.
3、OD叫作正△ABC的 它是正△ABC的 的半径.
怎样画一个正多边形呢? 已知⊙O的半径为2cm,求作圆的内接正三角形.
①用量角器度量,使∠AOB=∠BOC=∠COA=120°. ②用量角器或30°角的三角板度量,使∠BAO=∠CAO=30°.
你能用以上方法画出正四边形、正五边形、正六边形吗?
你能尺规作出正六边形、正三角形、正十二边形吗?
以半径长在圆周上截取六段相等的弧,依次连结各等分点,则作出正六边形. 先作出正六边形,则可作正三角形,正十二边形,正二十四边形………
练习:用量角器作五角星
按照一定比例,画一个停车让行的交通标志的外缘
1.用量角器等分圆2.尺规作图等分圆
小结:画正多边形的方法
相关课件
这是一份人教版九年级上册24.3 正多边形和圆授课课件ppt,共20页。PPT课件主要包含了学习目标,又∵OBOC,∴∠OBE450,∴OEBE1,中心角,应用举例,说一说解题思路,练一练,能力提升等内容,欢迎下载使用。
这是一份初中数学人教版九年级上册24.3 正多边形和圆图文课件ppt,共19页。PPT课件主要包含了创设情境,合作探究,范例运用,课堂练习等内容,欢迎下载使用。
这是一份2021学年第二十四章 圆24.3 正多边形和圆集体备课课件ppt,共17页。
