数学人教版5.3.1 平行线的性质第1课时学案
展开第1课时 平行线的性质
1.理解平行线的性质;(重点)
2.能运用平行线的性质进行推理证明.(重点、难点)
一、情境导入
窗户内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、∠2有什么数量关系?
二、合作探究
探究点一:平行线的性质
如图,AB∥CD,BE∥DF,∠B=65°,求∠D的度数.
解析:利用“两直线平行,内错角相等,同旁内角互补”的性质可求出结论.
解:∵AB∥CD,∴∠BED=∠B=65°.∵BE∥FD,∴∠BED+∠D=180°,∴∠D=180°-∠BED=180°-65°=115°.
方法总结:已知平行线求角度,应根据平行线的性质得出同位角相等,内错角相等,同旁内角互补.再结合已知条件进行转化.
探究点二:平行线与角平分线的综合运用
如图,DB∥FG∥EC,∠ACE=36°,AP平分∠BAC,∠PAG=12°,求∠ABD的度数.
解析:先利用GF∥CE,易求∠CAG,而∠PAG=12°,可求得∠PAC=48°.由AP是∠BAC的角平分线,可求得∠BAP=48°,从而可求得∠BAG=∠BAP+∠PAG=48°+12°=60°,即可求得∠ABD的度数.
解:∵FG∥EC,∴∠CAG=∠ACE=36°.∴∠PAC=∠CAG+∠PAG=36°+12°=48°.∵AP平分∠BAC,∴∠BAP=∠PAC=48°.∵DB∥FG,∴∠ABD=∠BAG=∠BAP+∠PAG=48°+12°=60°.
方法总结:(1)利用平行线的性质可以得出角之间的相等或互补关系,利用角平分线的定义,可以得出角之间的倍分关系;(2)求角的度数,可把一个角转化为一个与它相等的角或转化为已知角的和差.
探究点三:平行线性质的探究应用
如图,已知∠ABC.请你再画一个∠DEF,使DE∥AB,EF∥BC,且DE交BC边与点P.探究:∠ABC与∠DEF有怎样的数量关系?并说明理由.
解析:先根据题意画出图形,再根据平行线的性质进行解答即可.
解:∠ABC与∠DEF的数量关系是相等或互补.理由如下:如图①,因为DE∥AB,所以∠ABC=∠DPC.又因为EF∥BC,所以∠DEF=∠DPC,所以∠ABC=∠DEF.如图②,因为DE∥AB,所以∠ABC+∠DPB=180°.又因为EF∥BC,所以∠DEF=∠DPB,所以∠ABC+∠DEF=180°.故∠ABC与∠DEF的数量关系是相等或互补.
方法总结:画出满足条件的图形时,必须注意分情况讨论,即把所有满足条件的图形都要作出来.
三、板书设计
eq \a\vs4\al(平行线,的性质)eq \b\lc\{\rc\}(\a\vs4\al\c1(两直线平行,同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补))eq \a\vs4\al(求角的大小或,说明角之间的,数量关系)
平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学
初中数学人教版七年级下册5.3.1 平行线的性质导学案及答案: 这是一份初中数学人教版七年级下册5.3.1 平行线的性质导学案及答案,共1页。学案主要包含了复习引入,课堂练习等内容,欢迎下载使用。
初中人教版第五章 相交线与平行线5.3 平行线的性质5.3.1 平行线的性质第1课时学案: 这是一份初中人教版第五章 相交线与平行线5.3 平行线的性质5.3.1 平行线的性质第1课时学案,共4页。学案主要包含了自学指导提示等内容,欢迎下载使用。
初中数学人教版七年级下册5.3.1 平行线的性质第1课时学案设计: 这是一份初中数学人教版七年级下册5.3.1 平行线的性质第1课时学案设计,共4页。学案主要包含了情境导入,导学,精讲点拔,学习小结等内容,欢迎下载使用。