2021年湖南省娄底市新化县中考数学模拟试卷(一)(word版 含答案)
展开1.|﹣2021|=( )
A.2021B.﹣2021C.D.﹣
2.下列图形中既是轴对称图形,也是中心对称图形的是( )
A.B.
C.D.
3.下列运算正确的是( )
A.a2•a3=a6B.a3÷a2=a
C.(a2)3=a5D.(a2b)2=a2b2
4.某种芯片每个探针单元的面积为0.00000164cm2,0.00000164用科学记数法可表示为( )
A.1.64×10﹣5B.1.64×10﹣6C.16.4×10﹣7D.0.164×10﹣5
5.“红色小讲解员”演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,这两组数据一定不变的是( )
A.中位数B.众数C.平均数D.方差
6.不等式3(1﹣x)>2﹣4x的解在数轴上表示正确的是( )
A.B.
C.D.
7.将含30°角的一个直角三角板和一把直尺如图放置,若∠1=50°,则∠2等于( )
A.80°B.100°C.110°D.120°
8.如图,小明想要测量学校操场上旗杆AB的高度,他作了如下操作:
(1)在点C处放置测角仪,测得旗杆顶的仰角∠ACE=α;
(2)量得测角仪的高度CD=a;
(3)量得测角仪到旗杆的水平距离DB=b.
利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( )
A.a+btanαB.a+bsinαC.a+D.a+
9.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为( )
A.8cmB.10cmC.16cmD.20cm
10.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为( )
A.4B.6C.8D.12
11.如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为( )
A.148B.152C.174D.202
12.已知二次函数y=x2﹣2bx+2b2﹣4c(其中x是自变量)的图象经过不同两点A(1﹣b,m),B(2b+c,m),且该二次函数的图象与x轴有公共点,则b+c的值为( )
A.﹣1B.2C.3D.4
二.填空题(本大题共6个小题,每小题3分,满分18分,请把答案填写在答题卡上相应位置)
13.使式子有意义的x的取值范围是 .
14.在平面直角坐标系中,点A(a,2)与点B(6,b)关于原点对称,则ab= .
15.已知a2+2a﹣5=0,则代数式2a2+4a﹣1的值是 .
16.如图所示的电路图中,在开关全部断开的情况下,闭合其中任意一个开关,灯泡发亮的概率是 .
17.如图,在平行四边形ABCD中,BE平分∠ABC,CF⊥BE,连接AE,G是AB的中点,连接GF,若AE=4,则GF= .
18.各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S= .
三.解答题(共66分)
19.计算:|1﹣|﹣2sin45°﹣(1+)0+2﹣1.
20.先化简,再求值:(m+n)(m﹣n)+(m﹣n)2﹣(2m2﹣mn),其中m,n是一元二次方程x2+x﹣2=0的两个实数根.
21.某校对九年级学生进行一次综合文科中考模拟测试,成绩x分(x为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A、B、C、D表示),A等级:90≤x≤100,B等级:80≤x<90,C等级:60≤x<80,D等级:0≤x<60.该校随机抽取了一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.
请你根据统计图表提供的信息解答下列问题:
(1)上表中的a= ,b= ,m= .
(2)本次调查共抽取了多少名学生?请补全条形图.
(3)若从D等级的4名学生中抽取两名学生进行问卷调查,请用画树状图或列表的方法求抽取的两名学生恰好是一男一女的概率.
22.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cs35°≈0.8,tan35°≈0.7,≈1.7)
(1)求屋顶到横梁的距离AG;
(2)求房屋的高AB(结果精确到1m).
23.某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进一批相同的T恤衫,数量是3月份的2倍,但每件进价涨了10元.
(1)4月份进了这批T恤衫多少件?
(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.
①用含a的代数式表示b.
②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.
24.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF.
(1)求证:BF是⊙O的切线;
(2)若⊙O的直径为4,CF=6,求tan∠CBF.
25.如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ.
(1)如图a,求证:△BCP≌△DCQ;
(2)如图,延长BP交直线DQ于点E.
①如图b,求证:BE⊥DQ;
②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由.
26.如图,二次函数y=ax2+bx+4的图象与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.
(1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;
(2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;
(3)连接CP,CD,在动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与△DCE相似?如果存在,求出点P的坐标;如果不存在,请说明理由.
2021年湖南省娄底市新化县中考数学模拟试卷(一)
参考答案与试题解析
一.选择题(共12小题)
1.|﹣2021|=( )
A.2021B.﹣2021C.D.﹣
【分析】根据绝对值解答即可.
【解答】解:﹣2021的绝对值是2021,
故选:A.
2.下列图形中既是轴对称图形,也是中心对称图形的是( )
A.B.
C.D.
【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
【解答】解:A.既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;
B.不是轴对称图形,是中心对称图形,故本选项不符合题意;
C.是轴对称图形,不是中心对称图形,故本选项不符合题意;
D.既是轴对称图形又是中心对称图形,故本选项符合题意.
故选:D.
3.下列运算正确的是( )
A.a2•a3=a6B.a3÷a2=a
C.(a2)3=a5D.(a2b)2=a2b2
【分析】利用幂的运算性质对每个选项进行验证即可得出正确答案.
【解答】解:∵a2•a3=a2+3=a5,
∴A选项错误;
∵a3÷a2=a3﹣2=a,
∴B选项正确;
∵(a2)3=a6,
∴C选项错误;
∵(a2b)2=a4b2,
∴D选项错误.
综上,正确选项为:B.
故选:B.
4.某种芯片每个探针单元的面积为0.00000164cm2,0.00000164用科学记数法可表示为( )
A.1.64×10﹣5B.1.64×10﹣6C.16.4×10﹣7D.0.164×10﹣5
【分析】根据科学记数法的要求,将一个数字写成a×10n的形式,其中1≤|a|<10,n为整数.
【解答】解:0.00000164=1.64×10﹣6,
故选:B.
5.“红色小讲解员”演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,这两组数据一定不变的是( )
A.中位数B.众数C.平均数D.方差
【分析】根据平均数、中位数、众数、方差的意义即可求解.
【解答】解:根据题意,从7个原始评分中去掉1个最高分和1个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,不变的是中位数.
故选:A.
6.不等式3(1﹣x)>2﹣4x的解在数轴上表示正确的是( )
A.B.
C.D.
【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项可得.
【解答】解:去括号,得:3﹣3x>2﹣4x,
移项,得:﹣3x+4x>2﹣3,
合并同类项,得:x>﹣1,
故选:A.
7.将含30°角的一个直角三角板和一把直尺如图放置,若∠1=50°,则∠2等于( )
A.80°B.100°C.110°D.120°
【分析】根据平行线的性质和三角形的外角的性质即可得到结论.
【解答】解:如图所示,
∵AB∥CD
∴∠ABE=∠1=50°,
又∵∠2是△ABE的外角,
∴∠2=∠ABE+∠E=50°+60°=110°,
故选:C.
8.如图,小明想要测量学校操场上旗杆AB的高度,他作了如下操作:
(1)在点C处放置测角仪,测得旗杆顶的仰角∠ACE=α;
(2)量得测角仪的高度CD=a;
(3)量得测角仪到旗杆的水平距离DB=b.
利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( )
A.a+btanαB.a+bsinαC.a+D.a+
【分析】过C作CF⊥AB于F,则四边形BFCD是矩形,根据三角函数的定义即可得到结论.
【解答】解:过C作CF⊥AB于F,则四边形BFCD是矩形,
∴BF=CD=a,CF=BD=b,
∵∠ACF=α,
∴tanα==,
∴AF=b•tanα,
∴AB=AF+BF=a+btanα,
故选:A.
9.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为( )
A.8cmB.10cmC.16cmD.20cm
【分析】连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而可得出CD的长.
【解答】解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:
∵AB=48cm,
∴BD=AB=×48=24(cm),
∵⊙O的直径为52cm,
∴OB=OC=26cm,
在Rt△OBD中,OD===10(cm),
∴CD=OC﹣OD=26﹣10=16(cm),
故选:C.
10.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为( )
A.4B.6C.8D.12
【分析】根据双曲线上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.
【解答】解:延长BA交y轴于E,则BE⊥y轴,
∵点A在双曲线y=上,
∴四边形AEOD的面积为4,
∵点B在双曲线线y=上,且AB∥x轴,
∴四边形BEOC的面积为12,
∴矩形ABCD的面积为12﹣4=8.
故选:C.
11.如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为( )
A.148B.152C.174D.202
【分析】观察各图可知,后一个图案比前一个图案多2(n+3)枚棋子,然后写成第n个图案的通式,再取n=10进行计算即可求解.
【解答】解:根据图形,第1个图案有12枚棋子,
第2个图案有22枚棋子,
第3个图案有34枚棋子,
…
第n﹣1个图案有2(1+2+…+n+1)+2(n﹣2)=n2+5n﹣2枚棋子,
第n个图案有2(1+2+…+n+2)+2(n﹣1)=n2+7n+4枚棋子,
故第10个这样的图案需要黑色棋子的个数为102+7×10+4=100+70+4=174(枚).
故选:C.
12.已知二次函数y=x2﹣2bx+2b2﹣4c(其中x是自变量)的图象经过不同两点A(1﹣b,m),B(2b+c,m),且该二次函数的图象与x轴有公共点,则b+c的值为( )
A.﹣1B.2C.3D.4
【分析】求出抛物线的对称轴x=b,再由抛物线的图象经过不同两点A(1﹣b,m),B(2b+c,m),也可以得到对称轴为,可得b=c+1,再根据二次函数的图象与x轴有公共点,得到b2﹣4c≤0,进而求出b、c的值.
【解答】解:由二次函数y=x2﹣2bx+2b2﹣4c的图象与x轴有公共点,
∴(﹣2b)2﹣4×1×(2b2﹣4c)≥0,即b2﹣4c≤0 ①,
由抛物线的对称轴x=﹣=b,抛物线经过不同两点A(1﹣b,m),B(2b+c,m),
b=,即,c=b﹣1 ②,
②代入①得,b2﹣4(b﹣1)≤0,即(b﹣2)2≤0,因此b=2,
c=b﹣1=2﹣1=1,
∴b+c=2+1=3,
故选:C.
二.填空题(共6小题)
13.使式子有意义的x的取值范围是 x>1 .
【分析】根据二次根式有意义的条件可得x﹣1≥0,根据分式有意义的条件可得x﹣1≠0,故x﹣1>0再解不等式即可.
【解答】解:由题意得:x﹣1>0,
解得:x>1,
故答案为:x>1.
14.在平面直角坐标系中,点A(a,2)与点B(6,b)关于原点对称,则ab= 12 .
【分析】根据两个点关于原点对称时,它们的横坐标与纵坐标均互为相反数,即可得到a,b的值,进而得出ab的值.
【解答】解:∵点A(a,2)与点B(6,b)关于原点对称,
∴a=﹣6,b=﹣2,
∴ab=12,
故答案为:12.
15.已知a2+2a﹣5=0,则代数式2a2+4a﹣1的值是 9 .
【分析】将a2+2a﹣5=0变形为a2+2a=5,然后将整体代入所求的代数式进行化简求值.
【解答】解:∵a2+2a﹣5=0,
∴a2+2a=5,
∴a2+2a﹣1
=2(a2+2a)﹣1
=2×5﹣1
=10﹣1
=9.
故答案为:9.
16.如图所示的电路图中,在开关全部断开的情况下,闭合其中任意一个开关,灯泡发亮的概率是 .
【分析】根据概率公式知,共有3个开关,只闭一个开关时,只有闭合K3时才发光,所以小灯泡发光的概率等于 .
【解答】解:根据题意,三个开关,只有闭合K3小灯泡才发光,所以小灯泡发光的概率等于 .
故答案为.
17.如图,在平行四边形ABCD中,BE平分∠ABC,CF⊥BE,连接AE,G是AB的中点,连接GF,若AE=4,则GF= 2 .
【分析】根据平行四边形的性质结合角平分线的定义可求解∠CBE=∠BEC,即可得CB=CE,利用等腰三角形的性质可得BF=EF,进而可得GF是△ABE的中位线,根据三角形的中位线的性质可求解.
【解答】解:在平行四边形ABCD中,AB∥CD,
∴∠ABE=∠BEC.
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠CBE=∠BEC,
∴CB=CE.
∵CF⊥BE,
∴BF=EF.
∵G是AB的中点,
∴GF是△ABE的中位线,
∴GF=AE,
∵AE=4,
∴GF=2.
故答案为2.
18.各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S= 6 .
【分析】分别统计出多边形内部的格点数a和边界上的格点数b,再代入公式S=a+b﹣1,即可得出格点多边形的面积.
【解答】解:a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积,
通过图象可知a=4,b=6,
∴该五边形的面积S=4+×6﹣1=6,
故答案为:6.
三.解答题
19.计算:|1﹣|﹣2sin45°﹣(1+)0+2﹣1.
【分析】直接利用零指数幂、负整数指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.
【解答】解:原式=(﹣1)﹣2×﹣1+
=﹣1﹣﹣1+
=﹣.
20.先化简,再求值:(m+n)(m﹣n)+(m﹣n)2﹣(2m2﹣mn),其中m,n是一元二次方程x2+x﹣2=0的两个实数根.
【分析】化简整式得原式=﹣mn,根据韦达定理可得mn=﹣2,即可得出答案.
【解答】解:原式=m2﹣n2+m2﹣2mn+n2﹣2m2+mn
=﹣mn,
∵m,n是一元二次方程x2+x﹣2=0的两个实数根,
∴mn=﹣2,
则原式=﹣mn=2.
21.某校对九年级学生进行一次综合文科中考模拟测试,成绩x分(x为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A、B、C、D表示),A等级:90≤x≤100,B等级:80≤x<90,C等级:60≤x<80,D等级:0≤x<60.该校随机抽取了一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.
请你根据统计图表提供的信息解答下列问题:
(1)上表中的a= 8 ,b= 12 ,m= 30% .
(2)本次调查共抽取了多少名学生?请补全条形图.
(3)若从D等级的4名学生中抽取两名学生进行问卷调查,请用画树状图或列表的方法求抽取的两名学生恰好是一男一女的概率.
【分析】(1)根据题意列式计算即可得到结论;
(2)用D等级人数除以它所占的百分比即可得到调查的总人数;
(3)列表将所有等可能的结果列举出来,利用概率公式求解即可.
【解答】解:(1)a=16÷40%×20%=8,b=16÷40%×(1﹣20%﹣40%﹣10%)=12,m=1﹣20%﹣40%﹣10%=30%;
故答案为:8,12,30%;
(2)本次调查共抽取了4÷10%=40名学生;
补全条形图如图所示;
(3)将男生分别标记为A,B,女生标记为a,b,
∵共有12种等可能的结果,恰为一男一女的有8种,
∴抽得恰好为“一男一女”的概率为=.
22.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cs35°≈0.8,tan35°≈0.7,≈1.7)
(1)求屋顶到横梁的距离AG;
(2)求房屋的高AB(结果精确到1m).
【分析】(1)根据题意得到AG⊥EF,EG=EF,∠AEG=∠ACB=35°,解直角三角形即可得到结论;
(2)过E作EH⊥CB于H,设EH=x,解直角三角形即可得到结论.
【解答】解:(1)∵房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,EF∥BC,
∴AG⊥EF,EG=EF,∠AEG=∠ACB=35°,
在Rt△AGE中,∠AGE=90°,∠AEG=35°,
∵tan∠AEG=tan35°=,EG=6,
∴AG=6×0.7=4.2(米);
答:屋顶到横梁的距离AG约为4.2米;
(2)过E作EH⊥CB于H,
设EH=x,
在Rt△EDH中,∠EHD=90°,∠EDH=60°,
∵tan∠EDH=,
∴DH=,
在Rt△ECH中,∠EHC=90°,∠ECH=35°,
∵tan∠ECH=,
∴CH=,
∵CH﹣DH=CD=8,
∴﹣=8,
解得:x≈9.52,
∴AB=AG+BG=13.72≈14(米),
答:房屋的高AB约为14米.
23.某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进一批相同的T恤衫,数量是3月份的2倍,但每件进价涨了10元.
(1)4月份进了这批T恤衫多少件?
(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.
①用含a的代数式表示b.
②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.
【分析】(1)根据4月份用39000元购进一批相同的T恤衫,数量是3月份的2倍,可以得到相应的分式方程,从而可以求得4月份进了这批T恤衫多少件;
(2)①根据甲乙两店的利润相同,可以得到关于a、b的方程,然后化简,即可用含a的代数式表示b;
②根据题意,可以得到利润与a的函数关系式,再根据乙店按标价售出的数量不超过九折售出的数量,可以得到a的取值范围,从而可以求得乙店利润的最大值.
【解答】解:(1)设3月份购进x件T恤衫,
,
解得,x=150,
经检验,x=150是原分式方程的解,
则2x=300,
答:4月份进了这批T恤衫300件;
(2)①每件T恤衫的进价为:39000÷300=130(元),
(180﹣130)a+(180×0.8﹣130)(150﹣a)=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)
化简,得
b=;
②设乙店的利润为w元,
w=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)=54a+36b﹣600=54a+36×﹣600=36a+2100,
∵乙店按标价售出的数量不超过九折售出的数量,
∴a≤b,
即a≤,
解得,a≤50,
∴当a=50时,w取得最大值,此时w=3900,
答:乙店利润的最大值是3900元.
24.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF.
(1)求证:BF是⊙O的切线;
(2)若⊙O的直径为4,CF=6,求tan∠CBF.
【分析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角互余得到直角,从而证明∠ABF=90°,于是得到结论;
(2)过C作CH⊥BF于H,根据勾股定理得到BF===2,根据相似三角形的性质得到CH=,根据三角函数的定义即可得到结论.
【解答】(1)证明:连接AE,
∵AB是⊙O的直径,
∴∠AEB=90°,
∴∠1+∠2=90°.
∵AB=AC,
∴2∠1=∠CAB.
∵∠BAC=2∠CBF,
∴∠1=∠CBF
∴∠CBF+∠2=90°
即∠ABF=90°
∵AB是⊙O的直径,
∴直线BF是⊙O的切线;
(2)解:过C作CH⊥BF于H,
∵AB=AC,⊙O的直径为4,
∴AC=4,
∵CF=6,∠ABF=90°,
∴BF===2,
∵∠CHF=∠ABF,∠F=∠F,
∴△CHF∽△ABF,
∴=,
∴=,
∴CH=,
∴HF===,
∴BH=BF﹣HF=2﹣=,
∴tan∠CBF===.
25.如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ.
(1)如图a,求证:△BCP≌△DCQ;
(2)如图,延长BP交直线DQ于点E.
①如图b,求证:BE⊥DQ;
②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由.
【分析】(1)根据旋转的性质证明∠BCP=∠DCQ,得到△BCP≌△DCQ;
(2)①根据全等的性质和对顶角相等即可得到答案;
②根据等边三角形的性质和旋转的性质求出∠EPD=45°,∠EDP=45°,判断△DEP的形状.
【解答】(1)证明:∵∠BCD=90°,∠PCQ=90°,
∴∠BCP=∠DCQ,
在△BCP和△DCQ中,
,
∴△BCP≌△DCQ;
(2)①如图b,∵△BCP≌△DCQ,
∴∠CBF=∠EDF,又∠BFC=∠DFE,
∴∠DEF=∠BCF=90°,
∴BE⊥DQ;
②∵△BCP为等边三角形,
∴∠BCP=60°,∴∠PCD=30°,又CP=CD,
∴∠CPD=∠CDP=75°,又∠BPC=60°,∠CDQ=60°,
∴∠EPD=45°,∠EDP=45°,
∴△DEP为等腰直角三角形.
26.如图,二次函数y=ax2+bx+4的图象与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.
(1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;
(2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;
(3)连接CP,CD,在动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与△DCE相似?如果存在,求出点P的坐标;如果不存在,请说明理由.
【分析】(1)由题意得出方程组,求出二次函数的解析式为y=﹣x2+3x+4,则C(0,4),由待定系数法求出BC所在直线的表达式即可
(2)证DE∥PF,只要DE=PF,四边形DEFP即为平行四边形,由二次函数解析式求出点D的坐标,由直线BC的解析式求出点E的坐标,则DE=,设点P的横坐标为t,则P的坐标为:(t,﹣t2+3t+4),F的坐标为:(t,﹣t+4),由DE=PF得出方程,解方程进而得出答案;
(3)由平行线的性质得出∠CED=∠CFP,当∠PCF=∠CDE时,△PCF∽△CDE,则=,得出方程,解方程即可.
【解答】解:(1)将点A(﹣1,0),B(4,0),代入y=ax2+bx+4,
得:,
解得:,
∴二次函数的表达式为:y=﹣x2+3x+4,
当x=0时,y=4,
∴C(0,4),
设BC所在直线的表达式为:y=mx+n,
将C(0,4)、B(4,0)代入y=mx+n,
得:,
解得:,
∴BC所在直线的表达式为:y=﹣x+4;
(2)∵DE⊥x轴,PF⊥x轴,
∴DE∥PF,
只要DE=PF,四边形DEFP即为平行四边形,
∵y=﹣x2+3x+4=﹣(x﹣)2+,
∴点D的坐标为:(,),
将x=代入y=﹣x+4,即y=﹣+4=,
∴点E的坐标为:(,),
∴DE=﹣=,
设点P的横坐标为t,
则P的坐标为:(t,﹣t2+3t+4),F的坐标为:(t,﹣t+4),
∴PF=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,
由DE=PF得:﹣t2+4t=,
解得:t1=(不合题意舍去),t2=,
当t=时,﹣t2+3t+4=﹣()2+3×+4=,
∴点P的坐标为(,);
(3)存在,理由如下:
如图2所示:
由(2)得:PF∥DE,
∴∠CED=∠CFP,
又∵∠PCF与∠DCE有共同的顶点C,且∠PCF在∠DCE的内部,
∴∠PCF≠∠DCE,
∴只有∠PCF=∠CDE时,△PCF∽△CDE,
∴=,
∵C(0,4)、E(,),
∴CE==,
由(2)得:DE=,PF=﹣t2+4t,F的坐标为:(t,﹣t+4),
∴CF==t,
∴=,
∵t≠0,
∴(﹣t+4)=3,
解得:t=,
当t=时,﹣t2+3t+4=﹣()2+3×+4=,
∴点P的坐标为:(,).
等级
频数(人数)
频率
A
a
20%
B
16
40%
C
b
m
D
4
10%
等级
频数(人数)
频率
A
a
20%
B
16
40%
C
b
m
D
4
10%
A
B
a
b
A
(A,B)
(A,a)
(A,b)
B
(B,A)
(B,a)
(B,b)
a
(a,A)
(a,B)
(a,b)
b
(b,A)
(b,B)
(b,a)
2023年湖南省娄底市新化县中考数学模拟试卷(二)(含解析): 这是一份2023年湖南省娄底市新化县中考数学模拟试卷(二)(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年湖南省娄底市新化县中考数学一模试卷(含解析): 这是一份2023年湖南省娄底市新化县中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年湖南省娄底市中考数学模拟试卷(word版含答案): 这是一份2022年湖南省娄底市中考数学模拟试卷(word版含答案),共19页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。