所属成套资源:人教版新课标A数学选修4-5:同步练习
高中数学人教版新课标A选修4-53.三个正数的算术——几何平均不等式当堂达标检测题
展开
这是一份高中数学人教版新课标A选修4-53.三个正数的算术——几何平均不等式当堂达标检测题,共6页。
学业分层测评(三)(建议用时:45分钟)[学业达标]一、选择题1.已知正数x,y,z,且x+y+z=6,则lg x+lg y+lg z的取值范围是( )A.(-∞,lg 6] B.(-∞,3lg 2]C.[lg 6,+∞) D.[3lg 2,+∞)【解析】 ∵6=x+y+z≥3,∴xyz≤8.∴lg x+lg y+lg z=lg(xyz)≤lg 8=3lg 2.【答案】 B2.已知x∈R+,有不等式:x+≥2=2,x+=++≥3=3,….启发我们可能推广结论为:x+≥n+1(n∈N+),则a的值为( )A.nn B.2n C.n2 D.2n+1【解析】 x+=+,要使和式的积为定值,则必须nn=a,故选A.【答案】 A3.设0<x<1,则x(1-x)2的最大值为( )A. B.1 C. D.【解析】 ∵0<x<1,∴0<1-x<1,∴x(1-x)2=·2x·(1-x)·(1-x)≤3=.当且仅当x=时,等号成立.【答案】 D4.已知a,b,c∈R+,x=,y=,z=,则( ) 【导学号:32750016】A.x≤y≤z B.y≤x≤zC.y≤z≤x D.z≤y≤x【解析】 由a,b,c大于0,易知≥,即x≥y.又z2=,x2=,且x2=≤=,∴x2≤z2,则x≤z,因此z≥x≥y.【答案】 B5.设x,y,z>0,且x+3y+4z=6,则x2y3z的最大值为( )A.2 B.7C.8 D.1【解析】 ∵6=x+3y+4z=++y+y+y+4z≥6,∴x2y3z≤1,当=y=4z时,取“=”,即x=2,y=1,z=时,x2y3z取得最大值1.【答案】 D二、填空题6.若记号“*”表示求两个实数a与b的算术平均的运算,即a*b=,则两边均含有运算“*”和“+”,且对任意3个实数a,b,c都能成立的一个等式可以是________.【解析】 由题意知a+(b*c)=a+=,(a+b)*(a+c)==,所以a+(b*c)=(a+b)*(a+c).【答案】 a+(b*c)=(a+b)*(a+c)7.若a>2,b>3,则a+b+的最小值为________.【解析】 ∵a>2,b>3,∴a-2>0,b-3>0,则a+b+=(a-2)+(b-3)++5≥3+5=8.当且仅当a-2=b-3=,即a=3,b=4时等号成立.【答案】 88.已知a>0,b>0,c>0,且a+b+c=1,对于下列不等式:①abc≤;②≥27;③a2+b2+c2≥.其中正确的不等式序号是________.【解析】 ∵a,b,c∈(0,+∞),∴1=a+b+c≥3,0<abc≤=,≥27,从而①正确,②也正确.又a+b+c=1,∴a2+b2+c2+2(ab+bc+ca)=1,因此1≤3(a2+b2+c2),即a2+b2+c2≥,③正确.【答案】 ①②③三、解答题9.已知a,b,c均为正数,证明:a2+b2+c2+(++)≥6,并确定a,b,c为何值时,等号成立.【证明】 因为a,b,c均为正数,由算术几何平均不等式,得a2+b2+c2≥3(abc), ①++≥3(abc).所以≥9(abc). ②故a2+b2+c2+≥3(abc)+9(abc).又3(abc)+9(abc)≥2=6, ③所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立.当且仅当3(abc)=9(abc)时,③式等号成立.即当且仅当a=b=c=时,原式等号成立.10.已知x,y,z∈R+,x+y+z=3.(1)求++的最小值;(2)证明:3≤x2+y2+z2<9.【解】 (1)因为x+y+z≥3>0,++≥>0,所以(x+y+z)≥9,即++≥3,当且仅当x=y=z=1时,==取最小值3.(2)证明:x2+y2+z2=≥==3.又x2+y2+z2-9=x2+y2+z2-(x+y+z)2=-2(xy+yz+zx)<0,所以3≤x2+y2+z2<9.[能力提升]1.已知圆柱的轴截面周长为6,体积为V,则下列总成立的是( )A.V≥π B.V≤π C.V≥π D.V≤π【解析】 设圆柱半径为r,则圆柱的高h=,所以圆柱的体积为V=πr2·h=πr2·=πr2(3-2r)≤π=π.当且仅当r=3-2r,即r=1时取等号.【答案】 B2.若实数x,y满足xy>0,且x2y=2,则xy+x2的最小值是( ) 【导学号:32750017】A.1 B.2 C.3 D.4【解析】 xy+x2=xy+xy+x2≥3=3=3=3.【答案】 C3.已知关于x的不等式2x+≥7在x∈(a,+∞)上恒成立,则实数a的最小值为________.【解析】 ∵2x+=(x-a)+(x-a)++2a.又∵x-a>0,∴2x+≥3+2a=3+2a,当且仅当x-a=,即x=a+1时,取等号.∴2x+的最小值为3+2a.由题意可得3+2a≥7,得a≥2.【答案】 24.如图113(1)所示,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器,如图113(2)所示,求这个正六棱柱容器容积的最大值.图113【解】 设正六棱柱容器底面边长为x(0<x<1),高为h,由图可有2h+x=,∴h=(1-x),V=S底·h=6×x2·h=x2··(1-x)=9×××(1-x)≤9×3=.当且仅当=1-x,即x=时,等号成立.所以当底面边长为时,正六棱柱容器容积最大值为.
相关试卷
这是一份人教版新课标A选修4-5第三讲 柯西不等式与排序不等式三 排序不等式课时练习,共6页。
这是一份人教版新课标A选修4-5一 数学归纳法综合训练题,共5页。
这是一份高中人教版新课标A三 反证法与放缩法同步测试题,共6页。