考点01 圆的基本性质-2021年中考数学一轮复习基础夯实(安徽专用)
展开考点一 圆的基本性质
一、圆的有关概念
1.与圆有关的概念和性质
(1)圆:平面上到定点的距离等于定长的所有点组成的图形.
(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.
(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.
(4)圆心角:顶点在圆心的角叫做圆心角.
(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.
(6)弦心距:圆心到弦的距离.
2.注意
(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;
(2)3点确定一个圆,经过1点或2点的圆有无数个.
(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.
二、垂径定理及其推论
1.垂径定理
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.
2.推论
(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.
三、圆心角、弧、弦的关系
1.定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.
2.推论
在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
四、圆周角定理及其推论
1.定理
一条弧所对的圆周角等于它所对的圆心角的一半.
2.推论
(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.
(2)直径所对的圆周角是直角.
圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.
考向一 圆的基本认识
1.在一个圆中可以画出无数条弦和直径.
2.直径是弦,但弦不一定是直径.
3.在同一个圆中,直径是最长的弦.
4.半圆是弧,但弧不一定是半圆.弧有长度和度数,规定半圆的度数为180°,劣弧的度数小于180°,优弧的度数大于180°.
5.在同圆或等圆中能够互相重合的弧是等弧,度数或长度相等的弧不一定是等弧.
典例引领
1.(2020·山东单县·七年级期末)已知是半径为5的圆的一条弦,则的长不可能是( )
A.4 B.8 C.10 D.12
【答案】D
【分析】
根据圆中最长的弦为直径求解.
【详解】
因为圆中最长的弦为直径,所以弦长L≤10.
故选:D.
【点睛】
考查圆的性质,掌握直径是圆中最长的弦是解题的关键.
2.(2020·山东广饶县·九年级期中)下列说法:①直径是弦;②弦是直径;③半径相等的两个半圆是等弧;④长度相等的两条弧是等弧;⑤半圆是弧,但弧不一定是半圆.正确的说法有( )
A.1个 B.2个 C.3个 D.4个
【答案】C
【分析】
利用圆的有关定义及性质分别进行判断后即可确定正确的选项.
【详解】
①直径是弦,正确,符合题意;
②弦不一定是直径,错误,不符合题意;
③半径相等的两个半圆是等弧,正确,符合题意;
④能够完全重合的两条弧是等弧,原命题错误,不符合题意;
⑤半圆是弧,但弧不一定是半圆,正确,符合题意;
正确的有3个,
故选:C.
【点睛】
本题考查了圆的认识及圆的有关定义,解题的关键是了解圆的有关概念,难度不大.
变式拓展
1.(2018·长沙市开福区青竹湖湘一外国语学校九年级月考)下列说法错误的是( )
A.直径是圆中最长的弦 B.长度相等的两条弧是等弧
C.面积相等的两个圆是等圆 D.能完全重合的两条弧是等弧
2.(2020·北京昌平区·临川学校九年级期末)下列语句中不正确的有( )
①相等的圆心角所对的弧相等; ②平分弦的直径垂直于弦; ③圆是轴对称图形,任何一条直径都是它的对称轴 ; ④长度相等的两条弧是等弧
A.3个 B.2个 C.1个 D.4个
考向二 垂径定理
1.垂径定理中的“弦”为直径时,结论仍然成立.
2.垂径定理是证明线段相等、弧相等的重要依据,同时也为圆的计算和作图问题提供了理论依据.
典例引领
1.(2020·湖南长沙同升湖实验学校九年级月考)如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC等于( )
A.3 cm B.4cm C.5cm D.6cm
2.(2020·甘肃九年级一模)如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB等于( )
A. B.2 C.2 D.3
变式拓展
1.(2020·江苏新沂市·九年级期中)如图,的直径垂直于弦,垂足是点,,,则的长为( )
A. B. C.6 D.12
2.(2019·内蒙古杭锦后旗·九年级期末)如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于( )
A.6 B.6 C.3 D.9
考向三 弧、弦、圆心角、圆周角
1.圆心角的度数等于它所对弧的度数,把顶点在圆心的周角等分成360份,每一份的圆心角是1°的角,1°的圆心角对着1°的弧.
2.圆周角要具备两个特征:①顶点在圆上;②角的两边都和圆相交,二者缺一不可.
典例引领
1.(2020·全国九年级课时练习)如图,在中,,则弦AC与AB的关系是( )
A. B. C. D.
【答案】C
【解析】
【分析】
连接BC,由,可知弧AB=弧BC,从而AB=BC,然后根据三角形三条边的关系解答即可.
【详解】
∵,
∴弧AB=弧BC,
∴AB=BC,
∵AB+BC>AC,
∴AC<2AB.
故选C.
【点睛】
本题考查了圆心角、弧、弦之间的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对的其余各组量都分别相等.也考查了三角形三条边的关系.
2.(2017·山西九年级专题练习)如图,四边形ABCD内接于⊙O,F是上一点,且,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为( )
A.45° B.50° C.55° D.60°
【答案】B
【分析】
先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.
【详解】
∵四边形ABCD内接于⊙O,∠ABC=105°,
∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.
∵,∠BAC=25°,
∴∠DCE=∠BAC=25°,
∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.
【点睛】
本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.
变式拓展
1.(2018·陕西九年级专题练习)如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为( )
A.6 B.8 C.5 D.5
2.(2019·吉林长春市·东北师大附中九年级其他模拟)如图,是的直径,,若,则的度数是( )
A.32° B.60° C.68° D.64°
考点01 线段与角-2022年中考数学一轮复习基础夯实(安徽专用): 这是一份考点01 线段与角-2022年中考数学一轮复习基础夯实(安徽专用),文件包含考点01线段与角解析版docx、考点01线段与角原卷版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
考点01 事件与概率-2022年中考数学一轮复习基础夯实(安徽专用): 这是一份考点01 事件与概率-2022年中考数学一轮复习基础夯实(安徽专用),文件包含考点01事件与概率解析版docx、考点01事件与概率原卷版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
考点01 尺规作图-2022年中考数学一轮复习基础夯实(安徽专用): 这是一份考点01 尺规作图-2022年中考数学一轮复习基础夯实(安徽专用),文件包含考点01尺规作图解析版docx、考点01尺规作图原卷版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。