初中数学沪科版七年级下册10.2 平行线的判定第1课时学案
展开第1课时 平行线的概念、基本性质及三线八角
一、学习目标
1、了解同位角、内错角、同旁内角的意义。
2、会在简单的图形中辨认同位角、内错角、同旁内角。
3、会在给定某个条件下进行有关同位角、内错角、同旁内角的判定和计算。
二、学习重点与难点
教学重点:同位角、内错角、同旁内角的概念。
教学难点:各对关系角的辨认,复杂图形的辨认是本节教学的难点。
三、导学提纲:
认真阅读教材内容,完成下列各题:
1.填空:经过直线外一点,______ __与这条直线平行.
2.画图:已知直线AB,点P在直线AB外,用直尺和三角尺画过点P的直线CD,使CD∥AB.
3.反思:在用直尺和三角尺画平行线过程中,三角尺起着什么样的作用?
四、学习过程
(一)引入:中国最早的风筝据说是由古代哲学家墨翟制作的,风筝的骨架构成了多种关系的角。
这就是我们这节课要讨论的问题:两条直线和第三条直线相交的关系。
(二)让我们接受新的挑战:
------讨论:两条直线和第三条直线相交的关系
如图:两条直线a1,a2和第三条直线a3相交。
(或者说:直线a1,a2被直线a3所截。))
其中直线a1与直线a3相交构成四个角,直线a2与直线a3相交构成四个角。所以这个问题我们经常就叫它“三线八角”问题。
(三)让我们来了解 “三线八角”:
如图:直线a1,a2被直线a3所截,构成了八个角。
1. 观察∠1与∠5的位置:它们都在第三条直线a3的同旁,并且分别位于直线a1,a2的相同一侧,这样的一对角叫做“同位角”。
类似位置关系的角在图中还有吗?如果有,请找出来?
2. 观察∠3与∠5的位置:它们都在第三条直线 a3 的异侧,并且都位于两条直线a1,a2之间,这样的一对角叫做“内错角”。
类似位置关系的角在图中还有吗?如果有,请找出来?
3. 观察∠ 2与∠5的位置:它们都在第三条直线 a3 的同旁,并且都位于两条直线a1,a2之间,这样的一对角叫做“同旁内角”。
(四)知识整理(反思):
问题1.你觉得应该按怎样的步骤在“三线八角”中确定关系角?
确定前提(三线) 寻找构成的角(八角) 确定构成角中的关系角
问题2:在下面同位角、内错角、同旁内角中任选一对,请你看看这对角的四条边与“前提”中的“三线”有什么关系?
结论:两个角的在同一直线上的边所在直线就是前提中的第三线。
(五)试试你的身手:
例1:如图:请指出图中的同旁内角。(提示:请仔细读题、认真看图。)
答:∠1与∠5;∠4与∠6;∠1与∠A;∠5与∠A
合作学习:请找出以上各对关系角成立时的其余各对关系角。
1. 其中:∠1与∠5 ;∠4与∠6是直线 和直线 被直线 所截得到的同旁内角。此时三线构成了 个角。此时,同位角有: ,内错角有: 。
2.其中:∠1与∠A是直线 和直线 被直线 所截得到的同旁内角。此时三线构成了 个角。此时,同位角有: ,内错角有: 。
3.其中:∠5与∠A是直线 和直线 被直线 所截得到的同旁内角。此时三线构成了 个角。此时,同位角有: ,内错角有: 。
(六)让我们自己来试一试 :(练习)
1.看图填空:
(1)若ED,BC被AB所截,则∠1与 是同位角。
(2)若ED,BC被AF所截,则∠3与 是内错角。
(3)∠1与∠3是AB和AF被 所截构成的 角。
(4)∠2与∠4是 和 被BC所截构成的 角。
2.如图:直线AB、CD被直线AC所截,所产生的内错角是 。
如图:直线AD、BC被直线DC所截,产生了 角,它们是 。
(七)让我们步步登高:
例2:如图:直线DE交∠ABC的边BA于F。如果内错角∠1与∠2相等,那么与∠1相等的角还有吗?与∠1互补的角有吗?如果有,请写出来,并说明你的理由。
(八)回顾这节课,你觉得下面的内容掌握了吗?或者说你注意到了吗?
1. 如何确定“三线”构成的“八角”。(注意“一个前提”)
2. 如何根据“关系角”确定“三线”。(注意找“前提”)
3. 要注意数学中的“分类思想”应用,养成良好的思维习惯。
4. 你有没有养成解题后“反思”的习惯。
(九)课后作业:作业本
课后反思:
本节课的教学内容是为后面学习平行线的性质和判定作铺垫的,因而教学上着重于对三线八角的正确理解和辨别,对于学生来说不难掌握。
数学七年级下册10.3 平行线的性质导学案及答案: 这是一份数学七年级下册10.3 平行线的性质导学案及答案,共4页。学案主要包含了忆旧迎新,感悟新知,运用新知,练习检测,自学反思,课后拓展等内容,欢迎下载使用。
沪科版七年级下册10.2 平行线的判定第2课时导学案: 这是一份沪科版七年级下册10.2 平行线的判定第2课时导学案,共3页。学案主要包含了学前准备,探索与思考,应用,学习体会,自我检测,拓展延伸等内容,欢迎下载使用。
初中数学9.1 分式及其基本性质第2课时导学案: 这是一份初中数学9.1 分式及其基本性质第2课时导学案,共3页。学案主要包含了合作探究,自我测试等内容,欢迎下载使用。