人教版八年级下册20.1.2中位数和众数完美版课件ppt
展开八年级某班的教室里,三位同学正在为谁的数学成绩好而争论,他们的五次数学成绩分别是:
小华:62,94,95,98,98;
小明:62,62,98,99,100;
小丽:40,62,85,99,99.
他们都认为自己的数学成绩比另两位同学好,你看呢?
2. 能结合具体情境体会平均数、中位数、众数三者的特点与差异,能根据具体问题选择这些统计量来分析数据.
1. 在解决实际问题中进一步理解平均数、中位数、众数作为数据代表的意义,能根据所给信息求出相应的统计量.
3. 经历整理、描述、分析数据的过程,发展数据分析观念.
有6 户家庭的年收入分别为(单位:万元):4,5,5,6,7,50.你认为这6户家庭的年收入水平大概是多少?如果把数据50改成9,结果又会怎样?
(3)用众数估计: 众数= 5(万元).
平均数、众数和中位数的应用
把数据50改成9后的结果为:
请你对这三种估计结果进行评价,这些结果是否比较客观地反映了这些家庭的年收入水平?
因为这些数据之中,平均数最容易受到极端值的影响,中位数和众数不易受到极端值的影响,所以可以用中位数和众数来反映这些家庭的收入,但是数值有些偏低.它们各有优缺点.
平均数计算要用到所有的数据,任何一个数据的变动都会相应引起平均数的变动,它能够充分利用所有的数据信息,但它受极端值的影响较大.
众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,缺点是当众数有多个且众数的频数相对较小时可靠性小,局限性大.
中位数仅与数据的排列位置有关,不易受极端值影响,中位数可能出现在所给数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述其趋势,中位数的计算很少.
请说说平均数、众数和中位数这三个统计量的各自特点.
分析:小华成绩的众数是_____,中位数是_____,平均数是_____;小明成绩的众数是_____,中位数是_____,平均数是_____;小丽成绩的众数是_____,中位数是_____,平均数是_____.
因为他们之中,小华的平均数最大,小明的中位数最大,小丽的众数最大,所以都认为自己的成绩比其他两位同学好.
你认为谁的数学成绩最好呢?
例1 某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每个营业员在某月的销售额(单位:万元),数据如下:17 18 16 13 24 15 28 26 18 1922 17 16 19 32 30 16 14 15 2615 32 23 17 15 15 28 28 16 19
利用平均数、众数和中位数解答实际问题
(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均的月销售额是多少?(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由.(3)如果想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.
分析:本题通过分析样本数据的平均数、中位数、众数来估计______的情况.
确定一个适当的月销售目标是一个关键问题,如果目标定得太高,多数营业员完不成任务,会使营业员失去信心;如果目标定得太低,不能发挥营业员的潜力.
解:整理上面的数据得以下图表(请补充完整)
解:(1)样本数据的众数是_____,中位数是_____,利用计算器求得这组数据的平均数约是_____.可以推测,这个服装部营业员的月销售额为_____万元的人数最多,中间的月销售额是____万元,平均月销售额大约是____万元.
(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均的月销售额是多少?
解:(2)这个目标可以定为每月____万元(平均数).因为从样本数据看,在平均数、中位数和众数中,平均数最____.可以估计,月销售额定为每月____万元是一个较高的目标,大约会有___________的营业员获得奖励.
(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由.
解:(3)月销售额可以定为每月____万元(中位数).因为从样本情况看,月销售额在____万元以上(含18万元)的有16人,占总人数的一半左右.可以估计,如果月销售额定为____万元,将有一半左右的营业员获得奖励.
(3)如果想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.
甲、乙两名运动员在6次百米跑训练中的成绩如下:
请你比较这两组数据的众数,平均数和中位数,再作判断.
分析:谈看法实质上就是按众数,平均数和中位数的大小比较其优劣.
解:甲:平均数:10.9,众数:10.8,中位数:10.85;
乙:平均数:10.8,众数:10.9,中位数:10.85.
从平均数看,甲的成绩比乙的好;从众数看,乙的成绩比甲的好;从中位数看两人成绩一样.
例2 甲、乙两名队员参加射击训练,成绩分别绘制成下列两个统计图:
利用平均数、众数、中位数与统计图结合的问题
根据以上信息,整理分析数据如下:
(1)写出表格中a,b的值; 解:a=7,b=7.5.
(2)分别运用表中的三个统计量,简要分析这两名队员的射击成绩,若选派其中一名参赛,你认为应选哪名队员?解:从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多.综合以上各因素,若选派一名学生参赛的话,可选择乙参赛,因为乙获得高分的可能更大.
五一期间(5月1日~7日),昌平区每天最高温度(单位: ℃)情况如图所示,则表示最高温度的这组数据的中位数是( )A. 24 ℃ B. 25 ℃ C. 26 ℃ D. 27 ℃
车间有20名工人,某一天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表:(1)求这一天20名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?
解:(1) =(9×1+10×1+11×6+12×4+13×2+15×2+16×2+19×1+20×1)÷20=13(个);答:这一天20名工人生产零件的平均个数为13个;(2)中位数为 (个),众数为11个,当定额为13个时,有8人达标,6人获奖,不利于提高工人的积极性;当定额为12个时,有12人达标,8人获奖,不利于提高大多数工人的积极性;当定额为11个时,有18人达标,12人获奖,有利于提高大多数工人的积极性;
∴定额为11个时,有利于提高大多数工人的积极性.
1.九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”,乙说:“二班同学投中次数大约每个同学3个.”上面两名同学的议论分别反映出的统计量是( )A. 众数和平均数 B. 众数和中位数 C. 中位数和平均数 D. 中位数和众数
2.11名同学参加数学竞赛初赛,他们的得分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的( )A. 平均数 B. 中位数 C. 众数 D. 方差
3.公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁)甲群:13、13、14、15、15、15、16、17、17.乙群:3、4、4、5、5、6、6、54、57.
(1)甲群游客的平均年龄是 岁,中位数是 岁,众数是 岁,其中能较好反映甲群游客年龄特征的是 .(2)乙群游客的平均年龄是 岁,中位数是 岁,众数是 岁.其中能较好反映乙群游客年龄特征的是 .
4.某餐厅共有10名员工,所有员工工资的情况如下表:
请解答下列问题:(1)餐厅所有员工的平均工资是多少?(2)所有员工工资的中位数是多少?
解:(1)平均工资为4350元.
(2)工资的中位数为2000元.
(3)用平均数还是中位数描述该餐厅员工工资的一般水平比较恰当?(4)去掉经理和厨师甲的工资后,其他员工的平均工资是多少?它是否能反映餐厅员工工资的一般水平?
解:(3)由(1)(2)可知,用中位数描述该餐厅员工工资的一般水平比较恰当.(4)去掉经理和厨师甲的工资后,其他员工的平均工资是2062.5元,和(3)的结果相比较,能反映餐厅员工工资的一般水平.
某校为了解五年级女生体能情况,抽取了50名五年级女学生进行“一分钟仰卧起坐”测试. 测试的情况绘制成表格如下:(1)通过计算得出这组数据的平均数是20,请你直接写出这组数据的众数和中位数,它们分别是________,________;
(2)被抽取的五年级女生小红在“一分钟仰卧起坐”项目测试中的成绩是19次,小红认为成绩比平均数低,觉得自己成绩不理想,请你根据(1)中的相关数据分析小红的成绩; (3)学校根据测试数据规定五年级女学生“一分钟仰卧起坐”的合格标准为18次,已知该校五年级有女生250名,试估计该校五年级女生“一分钟仰卧起坐”的合格人数是多少?
解:(2)尽管低于平均数,但高于众数和中位数,所以还有比较好的. (3)由(1)得,该项目测试合格率为80%,则合格人数为250×80%=200(人).
某校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:
请根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整;
解:25-6-12-5=2(人),如图所示.
(2)直接写出表格中a,b,c的值;
解:a=87.6,b=90,c=100.
解:①一班和二班平均数相同,一班的中位数大于二班的中位数,故一班的成绩好于二班;②一班和二班平均数相同,一班的众数小于二班的众数,故二班的成绩好于一班;③B级以上(包括B级)一班18人,二班12人,故一班的成绩好于二班.
(3)请从以下给出的三个方面中任选一个对这次竞赛成绩的结果进行分析:①从平均数和中位数方面来比较一班和二班的成绩;②从平均数和众数方面来比较一班和二班的成绩;③从B级以上(包括B级)的人数方面来比较一班和二班的成绩.
平均数、中位数和众数的应用
平均数、中位数、众数的实际应用
平均数、中位数、众数的特征
初中数学人教版八年级下册20.1.2中位数和众数完美版ppt课件: 这是一份初中数学人教版八年级下册20.1.2中位数和众数完美版ppt课件,文件包含《2012中位数和众数第2课时》同步精品课件pptx、《2012中位数和众数第2课时》同步精品教案doc等2份课件配套教学资源,其中PPT共24页, 欢迎下载使用。
初中数学人教版八年级下册20.1.2中位数和众数获奖ppt课件: 这是一份初中数学人教版八年级下册20.1.2中位数和众数获奖ppt课件,共24页。PPT课件主要包含了情境引入,应聘者小王,第二天小王上班了,导入新课,讲授新课,知识要点,练一练,min,一半以上,总结归纳等内容,欢迎下载使用。
初中数学人教版八年级下册20.1.2中位数和众数精品ppt课件: 这是一份初中数学人教版八年级下册20.1.2中位数和众数精品ppt课件,共29页。PPT课件主要包含了小明说谎了吗等内容,欢迎下载使用。