2020版高考数学(文)新创新一轮复习通用版讲义:第八章第二节 空间点、直线、平面之间的位置关系
展开
第二节 空间点、直线、平面之间的位置关系
1.理解空间直线、平面位置关系的定义.
2.了解可以作为推理依据的公理和定理.
3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.
突破点一 平面的基本性质
1.公理1~3
文字语言
图形语言
符号语言
公理1
如果一条直线上的两点在一个平面内,那么这条直线在此平面内
⇒l⊂α
公理2
过不在一条直线上的三点,有且只有一个平面
A,B,C三点不共线⇒有且只有一个平面α,使A∈α,B∈α,C∈α
公理3
如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
P∈α,且P∈β⇒α∩β=l,且P∈l
[点拨] 公理1是判断一条直线是否在某个平面内的依据,公理2及其推论是判断或证明点、线共面的依据,公理3是证明三线共点或三点共线的依据.
2.公理2的三个推论
推论1:经过一条直线和这条直线外一点有且只有一个平面;
推论2:经过两条相交直线有且只有一个平面;
推论3:经过两条平行直线有且只有一个平面.
一、判断题(对的打“√”,错的打“×”)
(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.( )
(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.( )
(3)两个平面α,β有一个公共点A,就说α,β相交于A点,并记作α∩β=A.( )
(4)两个平面ABC与DBC相交于线段BC.( )
答案:(1)√ (2)× (3)× (4)×
二、填空题
1.四条线段顺次首尾相连,它们最多可确定的平面个数有________.
答案:4
2.下列命题中,真命题是________.
(1)空间不同三点确定一个平面;
(2)空间两两相交的三条直线确定一个平面;
(3)两组对边相等的四边形是平行四边形;
(4)和同一直线都相交的三条平行线在同一平面内.
解析:(1)是假命题,当三点共线时,过三点有无数个平面;(2)是假命题,当三条直线共点时,不能确定一个平面;(3)是假命题,两组对边相等的四边形可能是空间四边形;(4)是真命题.
答案:(4)
3.设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列三个命题,其中真命题是________.(填序号)
①P∈a,P∈α⇒a⊂α;
②a∩b=P,b⊂β⇒a⊂β;
③a∥b,a⊂α,P∈b,P∈α⇒b⊂α.
答案:③
1.正方体ABCDA1B1C1D1的棱长为2,M为CC1的中点,N为线段DD1上靠近D1的三等分点,平面BMN交AA1于点Q,则线段AQ的长为( )
A. B.
C. D.
解析:选D 如图所示,过点A作AE∥BM交DD1于点E,则E是DD1的中点,过点N作NT∥AE交A1A于点T,此时NT∥BM,所以B,M,N,T四点共面,所以点Q与点T重合,易知AQ=NE=,故选D.
2.如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB和AA1的中点.
求证:
(1)E,C,D1,F四点共面;
(2)CE,D1F,DA三线共点.
证明:(1)如图所示,连接CD1,EF,A1B,
∵E,F分别是AB和AA1的中点,∴EF∥A1B且EF=A1B.
又∵A1D1綊BC,
∴四边形A1BCD1是平行四边形,
∴A1B∥CD1,∴EF∥CD1,
∴EF与CD1确定一个平面,即E,C,D1,F四点共面.
(2)由(1)知EF∥CD1且EF=CD1,
∴四边形CD1FE是梯形,∴CE与D1F必相交,
设交点为P,则P∈CE,且P∈D1F,
又CE⊂平面ABCD,且D1F⊂平面A1ADD1,
∴P∈平面ABCD,且P∈平面A1ADD1.
又平面ABCD∩平面A1ADD1=AD,∴P∈AD,
∴CE,D1F,DA三线共点.
共面、共线、共点问题的证明方法
(1)证明点或线共面问题的两种方法:
①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;
②将所有条件分为两部分,然后分别确定平面,再证两平面重合.
(2)证明点共线问题的两种方法:
①先由两点确定一条直线,再证其他各点都在这条直线上;
②直接证明这些点都在同一条特定直线上.
(3)证明线共点问题的常用方法:
先证其中两条直线交于一点,再证其他直线经过该点.
1.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是( )
解析:选D A,B,C图中四点一定共面,D中四 点不共面.
2.如图,ABCDA1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是( )
A.A,M,O三点共线
B.A,M,O,A1不共面
C.A,M,C,O不共面
D.B,B1,O,M共面
解析:选A 连接A1C1,AC,则A1C1∥AC,所以A1,C1,C,A四点共面,所以A1C⊂平面ACC1A1,因为M∈A1C,所以M∈平面ACC1A1,又M∈平面AB1D1,所以M在平面ACC1A1与平面AB1D1的交线上,同理O在平面ACC1A1与平面AB1D1的交线上,所以A,M,O三点共线.
突破点二 空间中两直线的位置关系
1.空间中两直线的位置关系
(1)空间中两直线的位置关系
(2)公理4和等角定理
①公理4:平行于同一条直线的两条直线互相平行.
②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
2.异面直线所成的角
(1)定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).
(2)范围:.
一、判断题(对的打“√”,错的打“×”)
(1)已知a,b是异面直线,直线c平行于直线a,那么c与b不可能是平行直线.( )
(2)没有公共点的两条直线是异面直线.( )
(3)经过平面内一点的直线(不在平面内)与平面内不经过该点的直线是异面直线.( )
(4)若两条直线共面,则这两条直线一定相交.( )
答案:(1)√ (2)× (3)√ (4)×
二、填空题
1.已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是____________.
答案:相交、平行或异面
2.长方体ABCDA1B1C1D1中,AB=BC=1,AA1=,则异面直线BD1与CC1所成的角为________.
答案:
3.如图为正方体表面的一种展开图,则图中的AB,CD,EF,GH在原正方体中互为异面直线的有________对.
答案:3
考法一 空间两直线位置关系的判定
[例1] (1)已知a,b,c为三条不重合的直线,有以下结论:
①若a⊥b,a⊥c,则b∥c;②若a⊥b,a⊥c,则b⊥c;③若a∥b,b⊥c,则a⊥c.其中正确的个数为( )
A.0 B.1
C.2 D.3
(2)在下列四个图中,G,N,M,H分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________.(填序号)
[解析] (1)法一:在空间中,若a⊥b,a⊥c,则b,c可能平行,也可能相交,还可能异面,所以①②错误,③显然成立.
法二:构造长方体或正方体模型可快速判断,①②错误,③正确.
(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以在图②④中,GH与MN异面.
[答案] (1)B (2)②④
[方法技巧] 空间两直线位置关系的判定方法
考法二 异面直线所成的角
[例2] (2018·全国卷Ⅱ)在长方体ABCDA1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为( )
A. B.
C. D.
[解析] 如图,在长方体ABCDA1B1C1D1的一侧补上一个相同的长方体EFBAE1F1B1A1.连接B1F,由长方体性质可知,B1F∥AD1,所以∠DB1F为异面直线AD1与DB1所成的角或其补角.
连接DF,由题意,得DF==,FB1==2,DB1==.
在△DFB1中,由余弦定理,得
DF2=FB+DB-2FB1·DB1·cos∠DB1F,
即5=4+5-2×2××cos∠DB1F,
∴cos∠DB1F=.
[答案] C
[方法技巧] 平移法求异面直线所成角的步骤
平移
平移的方法一般有三种类型:(1)利用图中已有的平行线平移;(2)利用特殊点(线段的端点或中点)作平行线平移;(3)补形平移
证明
证明所作的角是异面直线所成的角或其补角
寻找
在立体图形中,寻找或作出含有此角的三角形,并解之
取舍
因为异面直线所成角θ的取值范围是0°<θ≤90°,所以所作的角为钝角时,应取它的补角作为异面直线所成的角
1.若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是( )
A.l1⊥l4
B.l1∥l4
C.l1与l4既不垂直也不平行
D.l1与l4的位置关系不确定
解析:选D 构造如图所示的正方体ABCDA1B1C1D1,取l1为AD,l2为AA1,l3为A1B1,当取l4为B1C1时,l1∥l4,当取l4为BB1时,l1⊥l4,故排除A、B、C,选D.
2.在正方体ABCDA1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是( )
A.相交 B.异面
C.平行 D.垂直
解析:选A 由BC綊AD,AD綊A1D1知,BC綊A1D1,从而四边形A1BCD1是平行四边形,所以A1B∥CD1,又EF⊂平面A1BCD1,EF∩D1C=F,则A1B与EF相交.
3.如图,在长方体ABCD A1B1C1D1中,AB=2,BC=1,BB1=1,P是AB的中点,则异面直线BC1与PD所成的角等于( )
A.30° B.45°
C.60° D.90°
解析:选C 如图,取A1B1的中点E,连接D1E,AD1,AE,则∠AD1E即为异面直线BC1与PD所成的角.因为AB=2,所以A1E=1,又BC=BB1=1,所以D1E=AD1=AE=,所以△AD1E为正三角形,所以∠AD1E=60°,故选C.
4.(2017·全国卷Ⅱ)已知直三棱柱ABC A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为( )
A. B.
C. D.
解析:选C 如图所示,将直三棱柱ABCA1B1C1补成直四棱柱ABCDA1B1C1D1,连接AD1,B1D1,则AD1∥BC1,所以∠B1AD1或其补角为异面直线AB1与BC1所成的角.
因为∠ABC=120°,AB=2,BC=CC1=1,
所以AB1=,AD1=.在△B1D1C1中,∠B1C1D1=60°,B1C1=1,D1C1=2,
所以B1D1==,
所以cos∠B1AD1==.
[课时跟踪检测]
[A级 基础题——基稳才能楼高]
1.下列命题中,真命题的个数为( )
①如果两个平面有三个不在一条直线上的公共点,那么这两个平面重合;
②两条直线可以确定一个平面;
③空间中,相交于同一点的三条直线在同一平面内;
④若M∈α,M∈β,α∩β=l,则M∈l.
A.1 B.2
C.3 D.4
解析:选B 根据公理2,可判断①是真命题;两条异面直线不能确定一个平面,故②是假命题;在空间中,相交于同一点的三条直线不一定共面(如墙角),故③是假命题;根据平面的性质可知④是真命题.综上,真命题的个数为2.
2.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定( )
A.与a,b都相交
B.只能与a,b中的一条相交
C.至少与a,b中的一条相交
D.与a,b都平行
解析:选C 如果c与a,b都平行,那么由平行线的传递性知a,b平行,与异面矛盾.故选C.
3.已知A,B,C,D是空间四点,命题甲:A,B,C,D四点不共面,命题乙:直线AC和BD不相交,则甲是乙成立的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选A 若A,B,C,D四点不共面,则直线AC和BD不共面,所以AC和BD不相交;若直线AC和BD不相交,若直线AC和BD平行时,A,B,C,D四点共面,所以甲是乙成立的充分不必要条件.
4.(2019·银川一中模拟)已知P是△ABC所在平面外的一点,M,N分别是AB,PC的中点,若MN=BC=4,PA=4,则异面直线PA与MN所成角的大小是( )
A.30° B.45°
C.60° D.90°
解析:选A 如图,取AC的中点D,连接DN,DM,由已知条件可得DN=2,DM=2.在△MND中,∠DNM为异面直线PA与MN所成的角,则cos∠DNM==,∴∠DNM=30°.
[B级 保分题——准做快做达标]
1.下列说法错误的是( )
A.两两相交且不过同一点的三条直线必在同一平面内
B.过直线外一点有且只有一个平面与已知直线垂直
C.如果共点的三条直线两两垂直,那么它们中每两条直线确定的平面也两两垂直
D.如果两条直线和一个平面所成的角相等,则这两条直线一定平行
解析:选D 两两相交且不过同一点的三条直线必在同一平面内,A正确,排除A;过直线外一点有且只有一个平面与已知直线垂直,B正确,排除B;如果共点的三条直线两两垂直,那么它们中每两条直线确定的平面也两两垂直,C正确,排除C;如果两条直线和一个平面所成的角相等,那么这两条直线不一定平行,D错误,选D.
2.(2019·长春质检)平面α,β的公共点多于两个,则
①α,β平行;
②α,β至少有三个公共点;
③α,β至少有一条公共直线;
④α,β至多有一条公共直线.
以上四个判断中不成立的个数为( )
A.0 B.1
C.2 D.3
解析:选C 由条件知,当平面α,β的公共点多于两个时,若所有公共点共线,则α,β相交;若公共点不共线,则α,β重合.故①一定不成立;②成立;③成立;④不成立.
3.(2019·云南大理模拟)给出下列命题,其中正确的两个命题是( )
①直线上有两点到平面的距离相等,则此直线与平面平行;
②夹在两个平行平面间的两条异面线段的中点连线平行于这两个平面;
③直线m⊥平面α,直线n⊥直线m,则n∥α;
④a,b是异面直线,则存在唯一的平面α,使它与a,b都平行且与a,b的距离相等.
A.①与② B.②与③
C.③与④ D.②与④
解析:选D 直线上有两点到平面的距离相等,则此直线可能与平面平行,也可能和平面相交;直线m⊥平面α,直线m⊥直线n,则直线n可能平行于平面α,也可能在平面α内,因此①③为假命题.
4.(2019·成都模拟)在直三棱柱ABCA1B1C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:
①四边形EFGH是平行四边形;
②平面α∥平面BCC1B1;
③平面α⊥平面BCFE.
其中正确的命题有( )
A.①② B.②③
C.①③ D.①②③
解析:选C 由题意画出草图如图所示,因为AA1∥平面α,平面α∩平面AA1B1B=EH,所以AA1∥EH.同理AA1∥GF,所以EH∥GF.又ABCA1B1C1是直三棱柱,易知EH=GF=AA1,所以四边形EFGH是平行四边形,故①正确;若平面α∥平面BCC1B1,由平面α∩平面A1B1C1=GH,平面BCC1B1∩平面A1B1C1=B1C1,知GH∥B1C1,而GH∥B1C1不一定成立,故②错误;由AA1⊥平面BCFE,结合AA1∥EH知EH⊥平面BCFE,又EH⊂平面α,所以平面α⊥平面BCFE,故③正确.综上可知,故选C.
5.(2019·广州模拟)如图是一个几何体的平面展开图,其中四边形ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面四个结论:
①直线BE与直线CF异面;
②直线BE与直线AF异面;
③直线EF∥平面PBC;
④平面BCE⊥平面PAD.
其中正确结论的个数是( )
A.1 B.2
C.3 D.4
解析:选B 画出该几何体,如图所示,①因为E,F分别是PA,PD的中点,所以EF∥AD,所以EF∥BC,直线BE与直线CF是共面直线,故①不正确;②直线BE与直线AF满足异面直线的定义,故②正确;③由E,F分别是PA,PD的中点,可知EF∥AD,所以EF∥BC,因为EF⊄平面PBC,BC⊂平面PBC,所以直线EF∥平面PBC,故③正确;④因为BE与PA的关系不能确定,所以不能判定平面BCE⊥平面PAD,故④不正确.所以正确结论的个数是2.
6.(2019·常德期末)一个正方体的展开图如图所示,A,B,C,D为原正方体的顶点,则在原来的正方体中( )
A.AB∥CD B.AB与CD相交
C.AB⊥CD D.AB与CD所成的角为60°
解析:选D 如图,把展开图中的各正方形按图①所示的方式分别作为正方体的前、后、左、右、上、下面还原,得到图②所示的直观图,可得选项A、B、C不正确.图②中,DE∥AB,∠CDE为AB与CD所成的角,△CDE为等边三角形,∴∠CDE=60°.∴正确选项为D.
7.(2019·成都检测)在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.如图,在鳖臑ABCD中,AB⊥平面BCD,且AB=BC=CD,则异面直线AC与BD所成角的余弦值为( )
A. B.-
C. D.-
解析:选A 如图,分别取AB,AD,BC,BD的中点E,F,G,O,连接EF,EG,OG,FO,FG,则EF∥BD,EG∥AC,所以∠FEG为异面直线AC与BD所成的角.易知FO∥AB,因为AB⊥平面BCD,所以FO⊥OG,设AB=2a,则EG=EF=a,FG==a,所以∠FEG=60°,所以异面直线AC与BD所成角的余弦值为,故选A.
8.(2019·福州质检)在三棱柱ABCA1B1C1中,E,F分别为棱AA1,CC1的中点,则在空间中与直线A1B1,EF,BC都相交的直线( )
A.不存在 B.有且只有两条
C.有且只有三条 D.有无数条
解析:选D 在EF上任意取一点M,直线A1B1与M确定一个平面,这个平面与BC有且仅有1个交点N,当M的位置不同时确定不同的平面,从而与BC有不同的交点N,而直线MN与A1B1,EF,BC分别有交点P,M,N,如图,故有无数条直线与直线A1B1,EF,BC都相交.
9.如图所示,在空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD上的点,且==,则下列说法中正确的是________(填序号).
①EF与GH平行;
②EF与GH异面;
③EF与GH的交点M可能在直线AC上,也可能不在直线AC上;
④EF与GH的交点M一定在直线AC上.
解析:连接EH,FG(图略),依题意,可得EH∥BD,FG∥BD,故EH∥FG,所以E,F,G,H共面.因为EH=BD,FG=BD,故EH≠FG,所以EFGH是梯形,EF与GH必相交,设交点为M.因为点M在EF上,故点M在平面ACB上.同理,点M在平面ACD上,所以点M是平面ACB与平面ACD的交点,又AC是这两个平面的交线,所以点M一定在直线AC上.
答案:④
10.(2019·南京模拟)已知α,β为两个不同的平面,m,n为两条不同的直线,则下列命题中正确的是________(填上所有正确命题的序号).
①若α∥β,m⊂α,则m∥β;
②若m∥α,n⊂α,则m∥n;
③若α⊥β,α∩β=n,m⊥n,则m⊥β;
④若n⊥α,n⊥β,m⊥α,则m⊥β.
解析:由α∥β,m⊂α,可得m∥β,所以①正确;由m∥α,n⊂α,可得m,n平行或异面,所以②不正确;由α⊥β,α∩β=n,m⊥n,可得m与β相交或m⊂β,所以③不正确;由n⊥α,n⊥β,可得α∥β,又m⊥α,所以m⊥β,所以④正确.综上,正确命题的序号是①④.
答案:①④
11.(2019·广东百校联盟联考)如图,E是正方体ABCDA1B1C1D1的棱C1D1上的一点,且BD1∥平面B1CE,则异面直线BD1与CE所成角的余弦值为________.
解析:不妨设正方体ABCDA1B1C1D1的棱长为2,连接BC1,设B1C∩BC1=O,连接EO,如图所示,在△BC1D1中,当点E为C1D1的中点时,BD1∥OE,则BD1∥平面B1CE,据此可得∠OEC为直线BD1与CE所成的角.在△OEC中,边长EC=,OC=,OE=,由余弦定理可得cos∠OEC==.即异面直线BD1与CE所成角的余弦值为.
答案:
12.(2019·广西南宁二中、柳州高中联考)如图,在直角梯形ABCD中,BC⊥DC,AE⊥DC,M,N分别是AD,BE的中点,将三角形ADE沿AE折起,下列说法正确的是________(填上所有正确的序号).
①不论D折至何位置(不在平面内)都有MN∥平面DEC;
②不论D折至何位置都有MN⊥AE;
③不论D折至何位置(不在平面ABC内)都有MN∥AB.
解析:如图,①易证ABCE为矩形,连接AC,则N在AC上,连接CD,BD,易证在△ACD中,MN为中位线,MN∥DC,又MN⊄平面DEC,∴MN∥平面DEC.①正确.
②由已知,AE⊥ED,AE⊥EC,ED∩EC=E,
∴AE⊥平面CED,
又CD⊂平面CED,
∴AE⊥CD,∴MN⊥AE,②正确.
③MN与AB异面.假若MN∥AB,则MN与AB确定平面MNBA,
从而BE⊂平面MNBA,AD⊂平面MNBA,与BE和AD是异面直线矛盾.③错误.
答案:①②
13.在直三棱柱ABCA1B1C1中,AB=AC=1,∠BAC=90°,且异面直线A1B与B1C1所成的角等于60°,设AA1=a.
(1)求a的值;
(2)求三棱锥B1A1BC的体积.
解:(1)∵BC∥B1C1,∴∠A1BC就是异面直线A1B与B1C1所成的角,即∠A1BC=60°.又AA1⊥平面ABC,AB=AC,则A1B=A1C,∴△A1BC为等边三角形,由AB=AC=1,∠BAC=90°⇒BC=,∴A1B=⇒=⇒a=1.
(2)∵CA⊥A1A,CA⊥AB,A1A∩AB=A,∴CA⊥平面A1B1B,∴VB1A1BC=VCA1B1B=××1=.
14.如图所示,A是△BCD所在平面外的一点,E,F分别是BC,AD的中点.
(1)求证:直线EF与BD是异面直线;
(2)若AC⊥BD,AC=BD,求EF与BD所成的角.
解:(1)证明:假设EF与BD不是异面直线,则EF与BD共面,从而DF与BE共面,即AD与BC共面,所以A,B,C,D在同一平面内,这与A是△BCD所在平面外的一点相矛盾.故直线EF与BD是异面直线.
(2)取CD的中点G,连接EG,FG,则AC∥FG,EG∥BD,所以相交直线EF与EG所成的角,即为异面直线EF与BD所成的角.又因为AC⊥BD,则FG⊥EG.在Rt△EGF中,由EG=FG=AC,求得∠FEG=45°,即异面直线EF与BD所成的角为45°.