所属成套资源:2021年高考数学一轮精选练习全套(含解析)
2021年高考数学一轮精选练习:41《直线、平面平行的判定及其性质》(含解析)
展开
2021年高考数学一轮精选练习:41《直线、平面平行的判定及其性质》一 、选择题1.下列说法中,错误的是( )A.若平面α∥平面β,平面α∩平面γ=l,平面β∩平面γ=m,则l∥mB.若平面α⊥平面β,平面α∩平面β=l,m⊂α,m⊥l,则m⊥βC.若直线l⊥平面α,平面α⊥平面β,则l∥βD.若直线l∥平面α,平面α∩平面β=m,直线l⊂平面β,则l∥m2.已知α,β为平面,a,b,c为直线,下列命题正确的是( )A.a⊂α,若b∥a,则b∥αB.α⊥β,α∩β=c,b⊥c,则b⊥βC.a⊥b,b⊥c,则a∥cD.a∩b=A,a⊂α,b⊂α,a∥β,b∥β,则α∥β 3.下列四个正方体中,A,B,C为所在棱的中点,则能得出平面ABC∥平面DEF的是( )4.已知平面α∥平面β,P是α,β外一点,过点P的直线m与α,β分别交于点A,C,过点P的直线n与α,β分别交于点B,D,且PA=6,AC=9,PD=8,则BD=( )A.16 B.24或4.8 C.14 D.20 5.已知m,n,l1,l2表示不同直线,α、β表示不同平面,若m⊂α,n⊂α,l1⊂β,l2⊂β,l1∩l2=M,则α∥β的一个充分条件是( )A.m∥β且l1∥α B.m∥β且n∥βC.m∥β且n∥l2 D.m∥l1且n∥l2 6.如图,在四棱锥P-ABCD中,AB⊥AD,BC∥AD,PA=AD=4,AB=BC=2,PA⊥平面ABCD,点E是线段AB的中点,点F在线段PA上,且EF∥平面PCD,直线PD与平面CEF交于点H,则线段CH的长度为( )A. B.2 C.2 D.27.如图所示,侧棱与底面垂直,且底面为正方形的四棱柱ABCD-A1B1C1D1中,AA1=2,AB=1,M,N分别在AD1,BC上移动,始终保持MN∥平面DCC1D1,设BN=x,MN=y,则函数y=f(x)的图象大致是( ) 8.如图,在正方体ABCD-A1B1C1D1中,E,F分别为B1C1,C1D1的中点,点P是底面A1B1C1D1内一点,且AP∥平面EFDB,则tan∠APA1的最大值是( )A. B.1 C. D.2二 、填空题9.如图所示,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件 时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况) 10.在三棱锥P-ABC中,PB=6,AC=3,G为△PAC的重心,过点G作三棱锥的一个截面,使截面平行于PB和AC,则截面的周长为 . 11.如图所示,设正方体ABCD-A1B1C1D1的棱长为a,点P是棱AD上一点,且AP=,过B1,D1,P的平面交平面ABCD于PQ,Q在直线CD上,则PQ= . 12.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的有 .(写出所有正确命题的序号)①若α⊥γ,β⊥γ,则α∥β;②若m∥n,m∥α,则n∥α;③若α∩β=n,m∥α,m∥β,则m∥n;④若m⊥α,m⊥n,则n∥α. 13.如图是一张矩形白纸ABCD,AB=10,AD=10,E,F分别为AD,BC的中点,现分别将△ABE,△CDF沿BE,DF折起,且A、C在平面BFDE同侧,下列命题正确的是 .(写出所有正确命题的序号)①当平面ABE∥平面CDF时,AC∥平面BFDE;②当平面ABE∥平面CDF时,AE∥CD;③当A、C重合于点P时,PG⊥PD;④当A、C重合于点P时,三棱锥P-DEF的外接球的表面积为150π. 三 、解答题14.如图所示的一块木料中,棱BC平行于平面A′C′.(1)要经过平面A′C′内的一点P和棱BC将木料锯开,应怎样画线?(2)所画的线与平面AC是什么位置关系?并证明你的结论. 15.如图所示,正方体ABCD-A1B1C1D1中, M,N分别是A1B1,A1D1的中点,E,F分别是B1C1,C1D1的中点.(1)求证:四边形BDFE为梯形;(2)求证:平面AMN∥平面EFDB. 16.如图,四棱锥P-ABCD中,AB∥CD,AB=2CD,E为PB的中点.(1)求证:CE∥平面PAD;(2)在线段AB上是否存在一点F,使得平面PAD∥平面CEF?若存在,证明你的结论,若不存在,请说明理由.
答案解析1.答案为:C;解析:对于A,由面面平行的性质定理可知为真命题,故A正确;对于B,由面面垂直的性质定理可知为真命题,故B正确;对于C,若l⊥α,α⊥β,则l∥β或l⊂β,故C错误;对于D,由线面平行的性质定理可知为真命题,故D正确.综上,选C. 2.答案为:D;解析:选项A中,b⊂α或b∥α,不正确.B中b与β可能斜交或b在β内,B错误.C中a∥c,a与c异面,或a与c相交,C错误.利用面面平行的判定定理,易知D正确. 3.答案为:B;解析:在B中,如图,连接MN,PN,∵A,B,C为正方体所在棱的中点,∴AB∥MN,AC∥PN,∵MN∥DE,PN∥EF,∴AB∥DE,AC∥EF,∵AB∩AC=A,DE∩EF=E,AB、AC⊂平面ABC,DE、EF⊂平面DEF,∴平面ABC∥平面DEF,故选B. 4.答案为:B;解析:设BD=x,由α∥β⇒AB∥CD⇒△PAB∽△PCD⇒=.①当点P在两平面之间时,如图(1),则有=,∴x=24;②当点P在两平面外侧时,如图(2),则有=,∴x=,故选B. 5.答案为:D;解析:对于选项A,当m∥β且l1∥α时,α,β可能平行也可能相交,故A不是α∥β的充分条件;对于选项B,当m∥β且n∥β时,若m∥n,则α,β可能平行也可能相交,故B不是α∥β的充分条件;对于选项C,当m∥β且n∥l2时,α,β可能平行也可能相交,故C不是α∥β的充分条件;对于选项D,当m∥l1,n∥l2时,由线面平行的判定定理可得l1∥α,l2∥α,又l1∩l2=M,由面面平行的判定定理可以得到α∥β,但α∥β时,m∥l1且n∥l2不一定成立,故D是α∥β的一个充分条件,故选D. 6.答案为:C;解析:如图,∵PD与平面CEF交于点H,∴平面CEF∩平面PCD=CH,∵EF∥平面PCD,∴EF∥CH,过点H作HM∥PA交AD于点M,连接CM,∵EF∩AF=F,CH∩HM=H,∴平面AEF∥平面CHM,∵平面AEF∩平面ABCD=AE,平面CHM∩平面ABCD=CM,∴AE∥CM,又BC∥AM,∴四边形ABCM为平行四边形,∴AM=2.又AD=4,∴M是AD的中点,则H为PD的中点,∴CH===2,故选C. 7.答案为:C;解析:如图,过M作MQ∥DD1,交AD于点Q,连接QN.∵MN∥平面DCC1D1,MQ∥平面DCC1D1,MN∩MQ=M,∴平面MNQ∥平面DCC1D1.又平面ABCD与平面MNQ和DCC1D1分别交于QN和DC,∴NQ∥DC,可得QN=CD=AB=1,AQ=BN=x,∵==2,∴MQ=2x.在Rt△MQN中,MN2=MQ2+QN2,即y2=4x2+1,∴y2-4x2=1(x≥0,y≥1),∴函数y=f(x)的图象为焦点在y轴上的双曲线上支的一部分,故选C. 8.答案为:D;解析:如图,分别取A1D1的中点G,A1B1的中点H,连接GH,AG,AH,连接A1C1,交GH,EF于点M,N,连接AM,连接AC,交BD于点O,连接ON.易证MN綊OA,所以四边形AMNO是平行四边形,所以AM∥ON,因为AM⊄平面BEFD,ON⊂平面BEFD,所以AM∥平面BEFD,易证GH∥EF,因为GH⊄平面BEFD,EF⊂平面BEFD,所以GH∥平面BEFD,又AM∩GH=M,AM,GH⊂平面AGH,所以平面AGH∥平面BEFD,所以点P在GH上,当点P与点M重合时,tan∠APA1的值最大.设正方体的棱长为1,则A1P=,所以tan∠APA1的最大值为=2. 一 、填空题9.答案为:点M在线段FH上(或点M与点H重合);解析:连接HN,FH,FN,则FH∥DD1,HN∥BD,∴平面FHN∥平面B1BDD1,只需M∈FH,则MN⊂平面FHN,∴MN∥平面B1BDD1. 10.答案为:8;解析:过点G作EF∥AC,分别交PA、PC于点E、F,过E、F分别作EN∥PB、FM∥PB,分别交AB、BC于点N、M,连接MN,则四边形EFMN是平行四边形(面EFMN为所求截面),且EF=MN=AC=2,FM=EN=PB=2,所以截面的周长为2×4=8. 11.答案为:a.解析:如图,∵平面A1B1C1D1∥平面ABCD,而平面B1D1P∩平面ABCD=PQ,平面B1D1P∩平面A1B1C1D1=B1D1,∴B1D1∥PQ.又∵B1D1∥BD,∴BD∥PQ,设PQ∩AB=M,∵AB∥CD,∴△APM∽△DPQ.∴==2,即PQ=2PM.又知△APM∽△ADB,∴==,∴PM=BD,又BD=a,∴PQ=a. 12.答案为:③;解析:对于①,若α⊥γ,β⊥γ,则α与β的位置关系是垂直或平行,故①错误;对于②,若m∥n,m∥α,则n可能在α内或平行于α,故②错误;对于③,若α∩β=n,m∥α,m∥β,根据线面平行的性质定理和判定定理,可以判断m∥n,故③正确;对于④,若m⊥α,m⊥n,则n可能在α内或平行于α,故④错误. 13.答案为:①④;解析:在△ABE中,tan∠ABE=,在△ACD中,tan∠CAD=,所以∠ABE=∠DAC,由题意,将△ABE,△DCF沿BE,DF折起,且A,C在平面BEDF同侧,此时A、C、G、H四点在同一平面内,平面ABE∩平面AGHC=AG,平面CDF∩平面AGHC=CH,当平面ABE∥平面CDF时,得到AG∥CH,显然AG=CH,所以四边形AGHC为平行四边形,所以AC∥GH,进而可得AC∥平面BFDE,故①正确;由于折叠后,直线AE与直线CD为异面直线,所以AE与CD不平行,故②不正确;当A、C重合于点P时,可得PG=,PD=10,又GD=10,∴PG2+PD2≠GD2,所以PG与PD不垂直,故③不正确;当A,C重合于点P时,在三棱锥P-DEF中,△EFD与△FCD均为直角三角形,所以DF为外接球的直径,即R==,所以外接球的表面积为S=4πR2=4π×2=150π,故④正确.综上,正确命题的序号为①④. 二 、解答题14.解:(1)过点P作B′C′的平行线,交A′B′,C′D′于点E,F,连接BE,CF,作图如下:(2)EF∥平面AC.理由如下:易知BE,CF与平面AC相交,因为BC∥平面A′C′,又因为平面B′C′CB∩平面A′C′=B′C′,所以BC∥B′C′,因为EF∥B′C′,所以EF∥BC,又因为EF⊄平面AC,BC⊂平面AC,所以EF∥平面AC. 15.证明:(1)连接B1D1,∵在△B1D1C1中,E,F分别是B1C1,C1D1的中点,∴EF∥B1D1且EF=B1D1,又知四边形BDD1B1为矩形,∴BD綊B1D1,∴EF∥BD且EF=BD.∴四边形BDFE为梯形.(2)连接FM,在△A1B1D1中,M,N分别为A1B1,A1D1的中点,∴MN∥B1D1.由(1)知,EF∥B1D1,∴MN∥EF.在正方形A1B1C1D1中,F为C1D1的中点,M为A1B1的中点,∴FM綊A1D1,又∵四边形ADD1A1为正方形,∴AD綊A1D1,∴FM綊AD,∴四边形ADFM为平行四边形.∴AM綊DF.又∵AM∩MN=M,DF∩FE=F,∴平面AMN∥平面EFDB. 16.解:(1)证明:取PA的中点H,连接EH,DH,如图所示,因为E为PB的中点,所以EH∥AB,EH=AB,又AB∥CD,CD=AB,所以EH∥CD,EH=CD,因此四边形DCEH是平行四边形,所以CE∥DH,又DH⊂平面PAD,CE⊄平面PAD,因此CE∥平面PAD.(2)存在点F为AB的中点,使平面PAD∥平面CEF,证明如下:取AB的中点F,连接CF,EF,所以AF=AB,又CD=AB,所以AF=CD,又AF∥CD,所以四边形AFCD为平行四边形,因此CF∥AD,又AD⊂平面PAD,CF⊄平面PAD,所以CF∥平面PAD,由(1)可知CE∥平面PAD,又CE∩CF=C,故平面CEF∥平面PAD,故存在AB的中点F满足要求.