终身会员
搜索
    上传资料 赚现金

    2021年高考数学一轮精选练习:54《直线与圆锥曲线》(含解析)

    立即下载
    加入资料篮
    2021年高考数学一轮精选练习:54《直线与圆锥曲线》(含解析)第1页
    2021年高考数学一轮精选练习:54《直线与圆锥曲线》(含解析)第2页
    2021年高考数学一轮精选练习:54《直线与圆锥曲线》(含解析)第3页
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021年高考数学一轮精选练习:54《直线与圆锥曲线》(含解析)

    展开

    2021年高考数学一轮精选练习:54《直线与圆锥曲线》         、选择题1.直线y=x+3与双曲线=1(a>0,b>0)的交点个数是(   )A.1          B.2          C.1或2         D.0 2.已知直线l与抛物线C:y2=4x相交于A,B两点,若线段AB的中点为(2,1),则直线l的方程为(   )A.y=x-1      B.y=-2x+5    C.y=-x+3     D.y=2x-3 3.已知直线y=kx-1与双曲线x2-y2=4的右支有两个交点,则k的取值范围为(   )A.       B.     C.      D. 4.已知点A(-2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为(   )A.         B.          C.          D. 5.已知不过原点O的直线交抛物线y2=2px于A,B两点,若OA,AB的斜率分别为kOA=2,kAB=6,则OB的斜率为(   )A.3         B.2        C.-2         D.-3 6.已知双曲线-y2=1的右焦点是抛物线y2=2px(p>0)的焦点,直线y=kx+m与抛物线相交于A,B两个不同的点,点M(2,2)是线段AB的中点,则AOB(O为坐标原点)的面积是(  )A.4         B.3           C.          D.2 7.已知双曲线C:=1(a>0,b>0),F是双曲线C的右焦点,过F作双曲线C在第一、三象限的渐近线的垂线l,若l与双曲线C的左、右两支分别交于点D,E,则双曲线C的离心率e的取值范围为(   )A.()     B.(,+)     C.(,2)        D.(1,) 8.已知双曲线E:=1,直线l交双曲线于A,B两点,若线段AB的中点坐标为,则直线l的方程为(   )A.4x+y-1=0            B.2x+y=0C.2x+8y+7=0          D.x+4y+3=0    9.设抛物线y2=4x的焦点为F,过点M(,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于C点,|BF|=3,则BCF与ACF的面积之比=(   )A.         B.          C.            D. 10.已知双曲线=1(a>0,b>0)上的一点到双曲线的左、右焦点的距离之差为4,若抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且x1x2=-,则m的值为(  )A.          B.            C.2           D.3          、填空题11.已知直线y=2x+2与抛物线y=ax2(a>0)交于P,Q两点,过线段PQ的中点作x轴的垂线,交抛物线于点A,若|A+A|=|A-A|,则a=       . 12.设P为双曲线=1右支上的任意一点,O为坐标原点,过点P作双曲线两渐近线的平行线,分别与两渐近线交于A,B两点,则平行四边形PAOB的面积为         . 13.设抛物线C:y2=2px(p>0),A为抛物线上一点(A不同于原点O),过焦点F作直线平行于OA,交抛物线于P,Q两点.若过焦点F且垂直于x轴的直线交直线OA于B,则|FP|·|FQ|-|OA|·|OB|=     .          、解答题14.已知椭圆E:=1(a>b>0)的离心率为,点A,B分别为椭圆E的左、右顶点,点C在E上,且ABC面积的最大值为2.(1)求椭圆E的方程;(2)设F为E的左焦点,点D在直线x=-4上,过F作DF的垂线交椭圆E于M,N两点.证明:直线OD平分线段MN.             15.设椭圆=1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(1)求椭圆的方程和抛物线的方程;(2)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于点A),直线BQ与x轴相交于点D.若APD的面积为,求直线AP的方程.             16.已知椭圆Γ=1,过点P(1,1)作倾斜角互补的两条不同直线l1,l2,设l1与椭圆Γ交于A、B两点,l2与椭圆Γ交于C,D两点.(1)若P(1,1)为线段AB的中点,求直线AB的方程;(2)若直线l1与l2的斜率都存在,记λ=,求λ的取值范围.             
    答案解析1.答案为:A;解析:由直线y=x+3与双曲线=1的渐近线y=x平行,故直线与双曲线的交点个数是1. 2.答案为:D;解析:设A(x1,y1),B(x2,y2),则有得y-y=4(x1-x2),由题可知x1x2.===2,即kAB=2,直线l的方程为y-1=2(x-2),即2x-y-3=0.故选D. 3.答案为:D;解析:由题意知k>0,联立整理得(1-k2)x2+2kx-5=0,因为直线y=kx-1与双曲线x2-y2=4的右支有两个交点,则联立所得方程有两个不同的正实数根x1,x2,所以解得1<k<,即k,故选D. 4.答案为:D;解析:易知p=4,直线AB的斜率存在,抛物线方程为y2=8x,与直线AB的方程y-3=k(x+2)联立,消去x整理得ky2-8y+16k+24=0,由题意知Δ=64-4k(16k+24)=0,解得k=-2或k=.因为直线与抛物线相切于第一象限,故舍去k=-2,故k=,可得B(8,8),又F(2,0),故kBF==,故选D. 5.答案为:D;解析:由题意可知,直线OA的方程为y=2x,与抛物线方程y2=2px联立得即A则直线AB的方程为y-p=6即y=6x-2p,与抛物线方程y2=2px联立得所以B所以直线OB的斜率为kOB==-3.故选D. 6.答案为:D;解析:由已知可得双曲线的右焦点为(2,0),因为该点也为抛物线的焦点,所以p=4,所以抛物线方程为y2=8x,又因为直线y=kx+m与抛物线相交于A,B两点,所以将直线方程代入抛物线方程可得(kx+m)2=8xk2x2+(2km-8)x+m2=0,x1+x2=,x1x2=.又因为M(2,2)是线段AB的中点,所以x1+x2==4,且2=2k+m,联立解得k=2,m=-2.|AB|=|x1-x2|=·=2.O到AB的距离d=.SAOB=×2×=2. 7.答案为:B;解析:由题意知,直线l:y=-(x-c),由x2x-=0,由x1x2=<0,得b4>a4所以b2=c2-a2>a2,所以e2>2,得e>. 8.答案为:C;解析:依题意,设点A(x1,y1),B(x2,y2),则有两式相减得=,即=×.又线段AB的中点坐标是因此x1+x2=2×=1,y1+y2=(-1)×2=-2,=-=-即直线AB的斜率为-,直线l的方程为y+1=-,即2x+8y+7=0. 9.答案为:D;解析:不妨设点A在第一象限,B在第四象限,设A(x1,y1),B(x2,y2),直线AB的方程为x=my+.由y2=4x得p=2,因为|BF|=3=x2=x2+1,所以x2=2,则y=4x2=4×2=8,所以y2=-2得y2-4my-4=0,由根与系数的关系,得y1y2=-4,所以y1=,由y=4x1,得x1=.过点A作AA垂直于准线x=-1,垂足为A过点B作BB垂直于准线x=-1,垂足为B,易知CBB′∽△CAA所以==.又|BB|=|BF|=3,|AA|=x1=+1=,所以==.故选D. 10.答案为:A;解析:由双曲线的定义知2a=4,得a=2,所以抛物线的方程为y=2x2.因为点A(x1,y1),B(x2,y2)在抛物线y=2x2上,所以y1=2x,y2=2x两式相减得y1-y2=2(x1-x2)(x1+x2),不妨设x1<x2又A,B关于直线y=x+m对称,所以=-1,故x1+x2=-,而 x1x2=-,解得x1=-1,x2=设A(x1,y1),B(x2,y2)的中点为M(x0,y0),则x0==-,y0===,因为中点M在直线y=x+m上,所以=-+m,解得m=.           、填空题11.答案为:2;解析:由得ax2-2x-2=0,设P(x1,y1),Q(x2,y2),则x1+x2=,x1x2=-设PQ的中点为M,则xM=xA=,yA=ax=由|A+A|=|A-A|可得A·A=0,即APAQ,又M是线段PQ的中点,2|AM|=|PQ|,由于MAx轴,|MA|==+2,又|PQ|=|x1-x2|=·=·42=5,解得a=2,此时满足Δ>0成立.故a=2. 12.答案为:15;解析:设P(x0,y0)(不妨设P在第一象限),A在第一象限,直线PA的方程为y-y0=-(x-x0),直线OA方程为y=x,联立解得xA=又P到渐近线OA的距离为d=又tanxOA=,所以cosxOA=.所以平行四边形PAOB的面积为S=2SOPA=|OA|·d==×|6y0+5x0|×=15. 13.答案为:0;解析:设OA所在的直线的斜率为k,则由得到A易知B,P,Q的坐标由方程组得到,消去x,-y-=0,设P(x1,y1),Q(x2,y2),由根与系数的关系得,y1y2=-p2根据弦长公式,|FP|·|FQ|=·|y1|··|y2|=|y1y2|=p2而|OA|·|OB|=·=p2所以|FP|·|FQ|-|OA|·|OB|=0.           、解答题14.解:(1)由题意得解得故椭圆E的方程为=1.(2)证明:设M(x1,y1),N(x2,y2),D(-4,n),线段MN的中点P(x0,y0),则2x0=x1+x2,2y0=y1+y2,由(1)可得F(-1,0),则直线DF的斜率为kDF==-当n=0时,直线MN的斜率不存在,根据椭圆的对称性可知OD平分线段MN.当n0时,直线MN的斜率kMN==.点M,N在椭圆上,整理得:=0,又2x0=x1+x2,2y0=y1+y2=-,直线OP的斜率为kOP=-直线OD的斜率为kOD=-直线OD平分线段MN. 15.解:(1)设F的坐标为(-c,0).依题意,==a,a-c=,解得a=1,c=,p=2,于是b2=a2-c2=.所以,椭圆的方程为x2=1,抛物线的方程为y2=4x.(2)设直线AP的方程为x=my+1(m0),与直线l的方程x=-1联立,可得点P,故Q.将x=my+1与x2=1联立,消去x,整理得(3m2+4)y2+6my=0,解得y=0或y=.由点B异于点A,可得点B.由Q可得直线BQ的方程为(x+1)-=0,令y=0,解得x=,故D.所以|AD|=1-=.又因为APD的面积为××=,整理得3m2-2|m|+2=0,解得|m|=,所以m=±.所以,直线AP的方程为3x+y-3=0或3x-y-3=0. 16.解:(1)解法一(点差法):由题意可知直线AB的斜率存在.设A(x1,y1),B(x2,y2),则两式作差得=-·=-·=-直线AB的方程为y-1=-(x-1),即x+2y-3=0.解法二:由题意可知直线AB的斜率存在.设直线AB的斜率为k,则其方程为y-1=k(x-1),代入x2+2y2=4中,得x2+2[kx-(k-1)]2-4=0.(1+2k2)x2-4k(k-1)x+2(k-1)2-4=0.Δ=[-4(k-1)k]2-4(2k2+1)[2(k-1)2-4]=8(3k2+2k+1)>0.设A(x1,y1),B(x2,y2),则AB中点为(1,1),(x1+x2)==1,则k=-.直线AB的方程为y-1=-(x-1),即x+2y-3=0.(2)由(1)可知|AB|= |x1-x2|=·=.设直线CD的方程为y-1=-k(x-1)(k0).同理可得|CD|=.∴λ== (k0),λ>0.∴λ2=1+=1+.令t=3k+则t(-,-2 ][2,+),令g(t)=1+,t(-,-2 ][2,+),g(t)在(-,-2],[2,+)上单调递减,2-g(t)<1或1<g(t)2+.故2-≤λ2<1或1<λ22+.λ.  

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map