2020版新一线高考理科数学(人教A版)一轮复习教学案:第8章第5节第2课时 直线与椭圆的位置关系
展开第2课时 直线与椭圆的位置关系
直线与椭圆的位置关系
1.若直线y=kx+1与椭圆+=1总有公共点,则m的取值范围是( )
A.m>1 B.m>0
C.0<m<5且m≠1 D.m≥1且m≠5
D [∵直线y=kx+1恒过定点(0,1),
∴要使直线y=kx+1与椭圆+=1总有公共点,
只需+≤1,即m≥1,又m≠5,故m的取值范围为m≥1且m≠5,故选D.]
2.已知直线l:y=2x+m,椭圆C:+=1.试问当m取何值时,直线l与椭圆C:
(1)有两个不重合的公共点;
(2)有且只有一个公共点;
(3)没有公共点.
[解] 将直线l的方程与椭圆C的方程联立,得方程组
将①代入②,整理得9x2+8mx+2m2-4=0.③
方程③根的判别式Δ=(8m)2-4×9×(2m2-4)=-8m2+144.
(1)当Δ>0,即-3<m<3时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l与椭圆C有两个不重合的公共点.
(2)当Δ=0,即m=±3时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l与椭圆C有两个互相重合的公共点,即直线l与椭圆C有且只有一个公共点.
(3)当Δ<0,即m<-3或m>3时,方程③没有实数根,可知原方程组没有实数解.这时直线l与椭圆C没有公共点.
[规律方法] 直线与椭圆位置关系的判定方法,直线与椭圆方程联立,消去y或x后得到关于x或y的一元二次方程时,设其判别式为Δ,
①Δ>0⇔直线与椭圆相交;
②Δ=0⇔直线与椭圆相切;
③Δ<0⇔直线与椭圆相离.
提醒:过椭圆内一点的直线均与椭圆相交.
弦长及中点弦问题
►考法1 中点弦问题
【例1】 (1)过椭圆+=1内一点P(3,1),且被点P平分的弦所在直线的方程是( )
A.4x+3y-13=0 B.3x+4y-13=0
C.4x-3y+5=0 D.3x-4y+5=0
(2)已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两点.若AB的中点坐标为(1,-1),则E的方程为( )
A.+=1 B.+=1
C.+=1 D.+=1
(1)B (2)D [(1)设所求直线与椭圆交于A(x1,y1),B(x2,y2)两点,
由题意得
①-②得+=0,
又P(3,1)是A,B的中点.
∴x1+x2=6,y1+y2=2,
∴kAB==-.
故直线AB的方程为y-1=-(x-3),
即3x+4y-13=0,故选B.
(2)设A(x1,y1),B(x2,y2),由题意可得
①-②得+=0.
又AB的中点为(1,-1),∴x1+x2=2,y1+y2=-2,
∴===,
又右焦点为F(3,0),∴a2-b2=9,∴a2=18,b2=9,
即所求椭圆方程为+=1,故选D.]
►考法2 弦长问题
【例2】 如图,在平面直角坐标系xOy中,椭圆+=1(a>b>0)的离心率为,过椭圆右焦点F作两条互相垂直的弦AB与CD.当直线AB斜率为0时,|AB|=4.
(1)求椭圆的方程;
(2)若|AB|+|CD|=,求直线AB的方程.
[解] (1)由题意知e==,2a=4.
又a2=b2+c2,解得a=2,b=,
所以椭圆方程为+=1.
(2)①当两条弦中一条弦所在直线的斜率为0时,另一条弦所在直线的斜率不存在,由题意知|AB|+|CD|=7,不满足条件.
②当两弦所在直线的斜率均存在且不为0时,设直线AB的方程为y=k(x-1),A(x1,y1),B(x2,y2),
则直线CD的方程为y=-(x-1).
将直线AB方程代入椭圆方程中并整理得(3+4k2)x2-8k2x+4k2-12=0,则x1+x2=,x1·x2=,
所以|AB|=|x1-x2|
=·=.
同理,|CD|==.
所以|AB|+|CD|=+
==,
解得k=±1,
所以直线AB的方程为x-y-1=0或x+y-1=0.
[规律方法] 1解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,应用根与系数的关系,解决相关问题.涉及弦中点的问题时用“点差法”解决,往往会更简单.
2与椭圆中点弦有关的问题应用椭圆中点弦的斜率公式kAB·kOM=-,即kAB=-比较方便快捷,其中点M的坐标为x0,y0.
设F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.
(1)若直线MN的斜率为,求C的离心率;
(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.
[解] (1)根据c=及题设知M,2b2=3ac.
将b2=a2-c2代入2b2=3ac,解得=或=-2(舍去).故C的离心率为.
(2)由题意,原点O为F1F2的中点,MF2∥y轴,
所以直线MF1与y轴的交点D(0,2)是线段MF1的中点,故=4,即b2=4a.①
由|MN|=5|F1N|得|DF1|=2|F1N|.
设N(x1,y1),由题意知y1<0,
则即
代入C的方程,得+=1.②
将①及c=代入②得+=1.
解得a=7,b2=4a=28,
故a=7,b=2.
(2016·全国卷Ⅱ)已知椭圆E:+=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.
(1)当t=4,|AM|=|AN|时,求△AMN的面积;
(2)当2|AM|=|AN|时,求k的取值范围.
[解] (1)设M(x1,y1),则由题意知y1>0.
当t=4时,E的方程为+=1,A(-2,0).
由已知及椭圆的对称性知,直线AM的倾斜角为.
因此直线AM的方程为y=x+2.
将x=y-2代入+=1得7y2-12y=0.
解得y=0或y=,所以y1=.
因此△AMN的面积S△AMN=2×××=.
(2)由题意知t>3,k>0,A(-,0).
将直线AM的方程y=k(x+)代入+=1得
(3+tk2)x2+2·tk2x+t2k2-3t=0.
由x1·(-)=得x1=,
故|AM|=|x1+|=.
由题设知,直线AN的方程为y=-(x+),
故同理可得|AN|=.
由2|AM|=|AN|得=,
即(k3-2)t=3k(2k-1).
当k=时上式不成立,因此t=.
t>3等价于=<0,
即<0.
由此得或解得<k<2.
因此k的取值范围是(,2).