终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    (导与练)2020版高考数学一轮复习(文数)习题:第4篇 第3节 平面向量的数量积及平面向量的应用(含解析)

    立即下载
    加入资料篮
    (导与练)2020版高考数学一轮复习(文数)习题:第4篇  第3节 平面向量的数量积及平面向量的应用(含解析)第1页
    (导与练)2020版高考数学一轮复习(文数)习题:第4篇  第3节 平面向量的数量积及平面向量的应用(含解析)第2页
    (导与练)2020版高考数学一轮复习(文数)习题:第4篇  第3节 平面向量的数量积及平面向量的应用(含解析)第3页
    还剩5页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (导与练)2020版高考数学一轮复习(文数)习题:第4篇 第3节 平面向量的数量积及平面向量的应用(含解析)

    展开

    www.ks5u.com第3节 平面向量的数量积及平面向量的应用【选题明细表】知识点、方法题号平面向量的数量积1,2,8,9,11平面向量的夹角与垂直4,5,6,7,13平面向量的模3,10,14平面向量的综合应用12,15基础巩固(时间:30分钟)1.(2018·全国卷)已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)等于( B )(A)4 (B)3 (C)2 (D)0解析:a·(2a-b)=2a2-a·b=2|a|2-a·b.因为|a|=1,a·b=-1,所以原式=2×12+1=3.故选B.2.已知|a|=6,|b|=3,a·b=-12,则向量a在向量b方向上的投影是( A )(A)-4 (B)4 (C)-2 (D)2解析:因为a·b=|a||b|cos<a,b>=18cos<a,b>=-12,所以cos<a,b>=-.所以ab方向上的投影是|a|cos<a,b>=-4.3.(2018·云南玉溪模拟)a=(2,1),a·b=10,|a+b|=5,|b|等于( C )(A) (B) (C)5 (D)25解析:因为a=(2,1),所以a=,因为a·b=10,|a+b|=5,所以|a+b|2=(5)2,|a|2+|b|2+2a·b=50,所以|b|2=25,所以|b|=5,故选C.4.已知向量=(1,1),=(2,3),则下列向量与垂直的是( D )(A)a=(3,6) (B)b=(8,-6)(C)c=(6,8) (D)d=(-6,3)解析:因为=(1,1),=(2,3),所以=(1,2).由于·d=(1,2)·(-6,3)=0,d.故选D.5.(2018·江西九校联考)已知向量a=(x2,x+2),b=(-,-1),c=(1,),若ab,则a与c的夹角为( A )(A) (B) (C) (D)解析:因为ab,所以=,所以x2=(x+2),cos<a,c>=====,又<a,c>[0,π],所以<a,c>=,故选A.6.设向量a=(1,m),b=(m-1,2),且ab.若(a-b)a,则实数m的值为( C )(A) (B)1或2 (C)1 (D)2解析:因为(a-b)a,所以(a-b)·a=0,即a2-b·a=0,1+m2-(m-1+2m)=0,m2-3m+2=0.解得m=2或m=1.当m=1时,a=(1,1),b=(0,2),满足ab;当m=2时,a=(1,2),b=(1,2),不满足ab,故舍去.综上,m=1.故选C.7.(2018·大连双基测试)若向量a,b的夹角为,且|a|=2,|b|=1,则a与a+2b的夹角为( A )(A) (B) (C) (D)解析:因为向量a,b的夹角为,且|a|=2,|b|=1,所以a·b=2×1×cos =1,|a+2b|===2,所以cos<a,a+2b>====,因为<a,a+2b>[0,π],所以<a,a+2b>=.8.(2018·云南昆明一中月考)已知a=(-1,),b=(0,2),则向量a在向量b方向上的投影为    . 解析:因为a·b=-1×0+×2=2,|b|=2,所以向量a在向量b方向上的投影为|a|·cos<a,b>===.答案:9.一质点受到平面上的三个力F1,F2,F3(单位:牛顿)的作用而处于平衡状态.已知F1,F2成60°角,且F1,F2的大小分别为2和4,则F3的大小为    . 解析:由题意知F3=-(F1+F2),所以|F3|=|F1+F2|,所以|F3|2=|F1|2+|F2|2+2|F1||F2|cos 60°=28,所以|F3|=2.答案:2能力提升(时间:15分钟)10.已知向量a,b满足|a-b|=3且b=(0,-1),若向量a在向量b方向上的投影为-2,则|a|等于( A )(A)2 (B)2 (C)4 (D)12解析:由|a-b|=3,得|a-b|2=(a-b)2=a2-2a·b+b2=9,所以a·b===,由向量a在向量b方向上的投影为-2,则==-2,即|a|2=4,所以|a|=2.故选A.11. (2018·河南鹤壁高级中学段考)如图,BC,DE是半径为1的圆O的两条直径,=2,则·等于( B )(A)- (B)-(C)- (D)-解析:因为=2,圆O的半径为1,所以||=,所以·=(+)·(+)=||2+·(OE+)+·=()2+0-1=-.故选B.12.(2018·江西赣州红色七校联考)已知点M是边长为2的正方形ABCD的内切圆内(含边界)一动点,则·的取值范围是( C )(A)[-1,0] (B)[-1,2](C)[-1,3] (D)[-1,4]解析: 设M(x,y),如图,建立平面直角坐标系,由题意,点M所在的轨迹为(x-1)2+(y-1)21(0x2,0y2),设M(x,y),又A(0,0),B(2,0),所以·=(-x,-y)·(2-x,-y)=-x(2-x)+y2=(x-1)2+y2-1,因为[0,2],所以(x-1)2+y2[0,4],所以(x-1)2+y2-1[-1,3],·[-1,3].故选C.13.已知单位向量e1e2的夹角为α,cos α=,向量a=3e1-2e2b=3e1-e2的夹角为β,cos β=    . 解析:a·b=(3e1-2e2)·(3e1-e2)=9+2-9×1×1×=8.因为|a|2=(3e1-2e2)2=9+4-12×1×1×=9,所以|a|=3.因为|b|2=(3e1-e2)2=9+1-6×1×1×=8,所以|b|=2,所以cos β===.答案:14.ABC,(-3),则角A的最大值为    . 解析:设ABC中,角A,B,C所对应的边分别为a,b,c由已知得(-3)·=(-3)·(-)=+3-4·=0,所以cos A===,则角A的最大值为.答案:15.在平行四边形ABCD中,AD=1,BAD=60°,E为CD的中点.若·=1,则AB=    . 解析:在平行四边形ABCD中,取AB的中点F,=,所以==-,又因为=+,所以·=(+)·(-)=-·+·-=||2+||||cos 60°-||2=1+×||-||2=1.所以(-||)||=0,又||0,所以||=,即AB=.答案:

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map