高中数学人教A版 (2019)必修 第一册1.5 全称量词与存在量词课堂检测
展开课时分层作业(七) 全称量词与存在量词
(建议用时:40分钟)
一、选择题
1.下列命题是“∀x∈R,x2>3”的另一种表述方式的是( )
A.有一个x∈R,使得x2>3
B.对有些x∈R,使得x2>3
C.任选一个x∈R,使得x2>3
D.至少有一个x∈R,使得x2>3
C [“∀”和“任选一个”都是全称量词.]
2.下列命题中的假命题是( )
A.∃x∈R,|x|=0
B.∃x∈R,2x-10=1
C.∀x∈R,x3>0
D.∀x∈R,x2+1>0
C [当x=0时,x3=0,故选项C为假命题.]
3.下列命题中是存在量词命题的是( )
A.∀x∈R,x2>0
B.∃x∈R,x2≤0
C.平行四边形的对边平行
D.矩形的任一组对边相等
B [A含有全称量词∀,为全称量词命题;B含有存在量词∃,为存在量词命题,满足条件;C省略了全称量词所有,为全称量词命题;D省略了全称量词所有,为全称量词命题,故选B.]
4.以下四个命题既是存在量词命题又是真命题的是( )
A.锐角三角形的内角是锐角或钝角
B.至少有一个实数x,使x2≤0
C.两个无理数的和必是无理数
D.存在一个负数x,使eq \f(1,x)>2
B [A中锐角三角形的内角是锐角或钝角是全称量词命题;B中x=0时,x2=0,所以B既是存在量词命题又是真命题;C中因为eq \r(3)+(-eq \r(3))=0,所以C是假命题;D中对于任一个负数x,都有eq \f(1,x)<0,所以D是假命题.]
5.命题“存在实数x,使x>1”的否定是( )
A.对任意实数x,都有x>1
B.不存在实数x,使x≤1
C.对任意实数x,都有x≤1
D.存在实数x,使x≤1
C [“存在实数x,使x>1”的否定是“对任意实数x,都有x≤1”.故选C.]
二、填空题
6.命题“存在实数x,y,使得x+y>1”是________(填“全称量词命题”或“存在量词命题”),用符号表示为________.
存在量词命题 ∃x,y∈R,x+y>1 [命题“存在实数x,y,使得x+y>1”是存在量词命题,用符号表示为:“∃x,y∈R,x+y>1”.]
7.命题“任意一个x∈R,都有x2-2x+4≤0”的否定是______.
存在一个x∈R,使得x2-2x+4>0 [原命题为全称量词命题,其否定为存在量词命题,既要否定量词又要否定结论,所以其否定为:存在一个x∈R,使得x2-2x+4>0.]
8.若“∀x∈R,x2+4x≥m”是真命题,则实数m的取值范围为________.
{m|m≤-4} [由题意,y=x2+4x=(x+2)2-4的最小值为-4,所以m≤-4.]
三、解答题
9.判断下列命题的真假,并写出这些命题的否定:
(1)三角形的内角和为180°;
(2)每个二次函数的图象都开口向下;
(3)存在一个四边形不是平行四边形.
[解] (1)是全称量词命题且为真命题.命题的否定:三角形的内角和不全为180°,即存在一个三角形的内角和不等于180°.
(2)是全称量词命题且为假命题.命题的否定:存在一个二次函数的图象开口不向下.
(3)是存在量词命题且为真命题.
命题的否定:所有的四边形都是平行四边形.
10.写出下列命题的否定,并判断其真假:
(1)p:∀m∈R,方程x2+x-m=0必有实根;
(2)q:有些梯形的对角线相等.
[解] (1)p:∃m∈R,方程x2+x-m=0无实数根.
由于当m=-1时,方程x2+x-m=0的根的判别式Δ<0,∴方程x2+x-m=0无实数根,故其是真命题.
(2)q:∀x∈{梯形},x的对角线不相等,如等腰梯形对角线相等,故其是假命题.
11.下列命题的否定是真命题的为( )
A.p1:每一个合数都是偶数
B.p2:两条平行线被第三条直线所截内错角相等
C.p3:有些实数的绝对值是正数
D.p4:某些平行四边形是菱形
A [若判断某命题的否定的真假,只要判断出原命题的真假即可得解,它们的真假性始终相反.因p1为全称量词命题,且是假命题,则p1是真命题.命题p2,p3,p4均为真命题,即p2,p3,p4均为假命题.]
12.(多选题)下列四个命题:
①一切实数均有相反数;②∃a∈N,使得方程ax+1=0无实数根;③梯形的对角线相等;④有些三角形不是等腰三角形.
其中,是真命题的是( )
A.① B.②
C.③ D.④
ABD [①为真命题;对于②,当a=0时,方程ax+1=0无实数根;对于③,等腰梯形的对角线相等,故③错误;④为真命题.]
13.下列命题中正确的有________.(填序号)
①∃x∈R,x≤0;
②至少有一个整数,它既不是合数也不是质数;
③∃x∈{x|x是无理数},x2是无理数.
①②③ [①∃x∈R,x≤0,正确;②至少有一个整数,它既不是合数也不是质数,正确,例如数1满足条件;③∃x∈{x|x是无理数},x2是无理数,正确,例如x=π.综上可得①②③都正确.]
14.(一题两空)已知命题p:存在x∈R,x2+2x+a=0.
(1)命题p的否定为:________;
(2)若命题p是真命题,则实数a的取值范围是________.
(1)∀x∈R,x2+2x+a≠0 (2){a|a≤1} [(1)命题“存在x∈R,x2+2x+a=0是存在量词命题,其否定为:∀x∈R,x2+2x+a≠0.
(2)存在x∈R,x2+2x+a=0为真命题,
∴Δ=4-4a≥0,∴a≤1.]
15.已知命题p:∀x∈{x|1≤x≤3},都有m≥x,命题q:∃x∈{x|1≤x≤3},使m≥x,若命题p为真命题,q为假命题,求实数m的取值范围.
[解] 由题意知命题p,q都是真命题.
由∀x∈{x|1≤x≤3},都有m≥x都成立,只需m大于或等于x的最大值,即m≥3.由∃x∈{x|1≤x≤3},使m≥x成立,只需m大于或等于x的最小值,即m≥1,因为两者同时成立,故实数m的取值范围为{m|m≥3}∩{m|m≥1}={m|m≥3.}
高中数学人教A版 (2019)必修 第一册4.3 对数精练: 这是一份高中数学人教A版 (2019)必修 第一册4.3 对数精练,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
数学必修 第一册4.1 指数当堂检测题: 这是一份数学必修 第一册4.1 指数当堂检测题,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
数学必修 第一册3.3 幂函数当堂检测题: 这是一份数学必修 第一册3.3 幂函数当堂检测题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。