终身会员
搜索
    上传资料 赚现金

    2021届山东高考数学一轮创新教学案:第4章第2讲平面向量基本定理及坐标表示

    立即下载
    加入资料篮
    2021届山东高考数学一轮创新教学案:第4章第2讲平面向量基本定理及坐标表示第1页
    2021届山东高考数学一轮创新教学案:第4章第2讲平面向量基本定理及坐标表示第2页
    2021届山东高考数学一轮创新教学案:第4章第2讲平面向量基本定理及坐标表示第3页
    还剩12页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021届山东高考数学一轮创新教学案:第4章第2讲平面向量基本定理及坐标表示

    展开

    2讲 平面向量基本定理及坐标表示[考纲解读] 1.熟悉平面向量的基本定理及其意义,并掌握平面向量的正交分解及其坐标表示.2.会用坐标表示平面向量的加法、减法与数乘运算,并理解用坐标表示的平面向量共线的条件.(重点、难点)[考向预测] 从近三年高考情况来看,本讲一直是高考中的一个热点.预测2021年会从以下几点进行命题:向量的坐标运算及线性表示;根据向量共线求参数值;共线向量与其他知识综合.题型以客观题为主,有时也会与三角函数、解析几何综合命题,试题难度以中档题型为主.1.平面向量基本定理如果e1e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a有且只有一对实数λ1λ2,使aλ1e1λ2e2.其中,不共线的向量e1e2叫做表示这一平面内所有向量的一组基底.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.2.平面向量的坐标运算a(x1y1)b(x2y2),则ab(x1x2y1y2)ab(x1x2y1y2)λa(λx1λy1)|a||ab|.3.平面向量共线的坐标表示a(x1y1)b(x2y2),则abx1y2x2y10.1.概念辨析(1)平面内的任何两个向量都可以作为一组基底.(  )(2)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.(  )(3)ab是平面内的一组基底,若实数λ1μ1λ2μ2满足λ1aμ1bλ2aμ2b,则λ1λ2μ1μ2.(  )(4)a(x1y1)b(x2y2),则ab的充要条件可表示成.(  )答案 (1)× (2) (3) (4)×2.小题热身(1)设平面向量a(1,0)b(0,2),则2a3b等于(  )A.(6,3)  B(2,-6)C.(2,1)  D(7,2)答案 B解析 2a3b2(1,0)3(0,2)(2,0)(0,6)(2,-6).(2)下列各组向量中,可以作为基底的是(  )A.e1(0,0)e2(1,-2)B.e1(1,2)e2(5,7)C.e1(3,5)e2(6,10)D.e1(2,-3)e2答案 B解析 对于Ae1e2,不能作为基底;对于B,-1×72×50,所以e1e2不共线,可以作为基底;对于Ce22e1,所以e1e2,不能作为基底;对于De14e2,所以e1e2,不能作为基底.(3)如图,正方形ABCD中,EDC的中点,若λμ,则λμ的值为(  )A.  B.-C.1  D.-1答案 A解析 由题意得=-,又λμ,由平面向量基本定理得λ=-μ1,所以λμ.(4)e1e2是不共线的两个向量,且λe1μe20,则λ2μ2________.答案 0解析 解法一:假设λ0,则由λe1μe20e1=-e2,则e1e2共线,与e1e2不共线矛盾,所以λ0,同理可得μ0,所以λ2μ20.解法二:因为0e10e20e1e2不共线,又因为λe1μe20,所以由平面向量基本定理得λμ0,所以λ2μ20.题型 一 平面向量基本定理及其应用1.如图,有5个全等的小正方形,xy,则xy 的值是________答案 1解析 由平面向量的运算可知22,所以2(2)32,注意到不共线,且xy,即xy32,所以x3y=-2,所以xy1.2(2019·西安调研)如图,在平行四边形ABCD中,O是对角线ACBD的交点,N是线段OD的中点,AN的延长线与CD交于点E,若m,则实数m的值为________答案 解析 NOD的中点,得(),又因为ANE三点共线,故λ,即mλ,又不共线,所以解得故实数m.1.用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要注意运用平面几何的一些性质定理.2.运用平面向量基本定理时应注意的问题(1)只要两个向量不共线,就可以作为平面向量的一组基底,基底可以有无穷多组.(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算.(3)利用唯一性建立方程组.如举例说明2.1.如图,在ABC中,PBN上的一点,若m,则实数m的值为________答案 解析 λPBN上的一点,λλ()(1λ)λ(1λ)m.m1λ,解得λm.2(2019·衡阳模拟)在如图所示的方格纸中,向量abc的起点和终点均在格点(小正方形顶点)上,若cxayb(xy为非零实数)共线,则的值为________答案 解析 e1e2分别为水平方向(向右)与竖直方向(向上)的单位向量,则向量ce12e2a2e1e2b=-2e12e2,由cxayb共线,得cλ(xayb),所以e12e22λ(xy)e1λ(x2y)e2,所以所以的值为.题型 二 平面向量的坐标运算1.已知点A(1,3)B(4,-1),则与同方向的单位向量是(  )A.   B.C.   D.答案 A解析 (4,-1)(1,3)(3,-4)同方向的单位向量为.2.已知A(2,4)B(3,-1)C(3,-4).设abc,且3c=-2b.(1)3ab3c(2)求满足ambnc的实数mn(3)MN的坐标及向量的坐标.解 由已知得a(5,-5)b(6,-3)c(1,8)(1)3ab3c3(5,-5)(6,-3)3(1,8)(1563,-15324)(6,-42)(2)因为mbnc(6mn,-3m8n)所以解得(3)O为坐标原点,因为3c所以3c(3,24)(3,-4)(0,20)所以M(0,20)又因为=-2b所以=-2b(12,6)(3,-4)(9,2)所以N(9,2).所以(9,-18).平面向量坐标运算的技巧(1)向量的坐标运算主要是利用加、减、数乘运算法则进行,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中要注意方程思想的运用及正确使用运算法则.1.(2019·厦门外国语学校模拟)已知点A(1,1)B(0,2),若向量(2,3),则向量(  )A.(3,-2)  B(2,-2)C.(3,-2)  D(3,2)答案 D解析 由已知,得(1,1)(2,3)(1,1)(3,2).2.已知a(1,1)b(1,-1)c(1,2),则c等于(  )A.ab   B.abC.ab  D.-ab答案 B解析 cλaμb.(1,2)λ(1,1)μ(1,-1)所以解得所以cab.题型 三 平面向量共线的坐标表示 角度1 利用向量共线求参数的值1.(1)(2018·全国卷)已知向量a(1,2)b(2,-2)c(1λ).若c(2ab),则λ________(2)平面内有三点A(0,-3)B(3,3)C(x,-1),且ABC三点共线,则x________.答案 (1) (2)1解析 (1)由题意可得2ab(4,2)c(2ab)c(1λ)4λ20,即λ.(2)由题意知(3,6)(x3,-4).因为ABC三点共线,所以共线,所以3×(4)6(x3)0,解得x1.角度2 向量共线综合问题2.(2019·山东德州一模)已知ABC的三边分别是abc,设向量m(sinBsinAac)n(sinCab),且mn,则B的大小是(  )A.   B.  C.   D.答案 B解析 因为mn所以(ab)(sinBsinA)sinC(ac)由正弦定理得,(ab)(ba)c(ac)整理得a2c2b2=-ac由余弦定理得cosB=-.0<B,所以B.1.平面向量共线的充要条件的两种形式(1)a(x1y1)b(x2y2),则ab的充要条件是x1y2x2y10.如举例说明1(1)(2)ab(b0),则aλb.2.利用向量共线求参数值向量共线的坐标表示既可以判定两向量平行,也可以由向量平行求参数值.当两向量的坐标均非零时,可以利用坐标对应成比例来求解.3.向量坐标运算解决综合问题的要点(1)准确运用加、减、数乘的坐标运算法则.(2)准确运用向量相等、向量共线、垂直的坐标运算形式,实现问题的转化.(3)准确运用三角恒等变换、不等式、方程等知识,解决综合问题.1.(2019·绵阳模拟)已知向量a(sin2α1)b(cosα1),若ab,0<α<,则α________.答案 解析 因为ab,所以sin2αcosα,即cosα(2sinα1)0,又0<α<,所以cosα>0,所以sinα,解得α.2.已知向量a(1,2)b(2,3),若manb2ab共线(其中nR,且n0),则________.答案 2解析 a(1,2)b(2,3),得manb(m2n,2m3n)2ab(0,7),由manb2ab共线,可得7(m2n)0,则=-2. 组 基础关1.向量ab满足ab(1,5)ab(5,-3),则b(  )A.(3,4)  B(3,4)C.(3,-4)  D(3,-4)答案 A解析 ab(1,5)ab(5,-3),得2b(1,5)(5,-3)(6,8),所以b(6,8)(3,4).2.已知向量m与向量n(3sinAcosA)共线,其中AABC的内角,则角A的大小为(  )A.   B.  C.   D.答案 C解析 mnsinA(sinAcosA)02sin2A2sinAcosA31cos2Asin2A3,,sin1A(0π)2A,解得A.3.(2019·绍兴模拟)已知点M(5,-6)和向量a(1,-2),若=-3a,则点N的坐标为(  )A.(2,0)  B(3,6)C.(6,2)  D(2,0)答案 A解析 因为3a(5,-6)3(1,-2)(2,0),所以点N的坐标为(2,0).4.已知向量a(5,-2)b(4,-3)c(xy),若a2b3c0,则c(  )A.   B.C.   D.答案 D解析 因为a2b3c(5,-2)2(4,-3)3(xy)(133x,43y)0,所以解得所以c.5.(2020·内蒙古包钢一中月考)已知在平行四边形ABCD中,(3,7)(2,3),对角线ACBD交于点O,则的坐标为(  )A.   B.C.   D.答案 C解析 =-=-()=-[(2,3)(3,7)]=-(1,10).6.(2019·宁波模拟)ABC中,内角ABC所对的边分别为abc,设向量p(acb)q(baca),若pq,则角C的大小为(  )A.30°  B60° C90°  D120°答案 B解析 由题意得(ac)(ca)b(ba)0a2b2c2abcosC0°<C<180°C60°.7.(2019·绵阳模拟)如图四边形ABCD是正方形延长CDE使得DECD若点PCD的中点λμλμ(  )A3   B. C2  D1答案 B解析 由题知λμλμ()(λμ)μ.λμ,故选B.8.已知向量a(1λ)b(λ2),若(ab)(ab),则λ________.答案 ±解析 ab(1λ2λ)ab(1λλ2).因为(ab)(ab),所以(1λ)(λ2)(2λ)(1λ),解得λ±.9.已知点A(2,3)B(4,5)C(7,10),若(λR),且点P在直线x2y0上,则λ的值为________答案 解析 P(xy),则由λ,得(x2y3)(2,2)λ(5,7)(25λ27λ),所以x5λ4y7λ5.又点P在直线x2y0上,故5λ42(7λ5)0,解得λ=-.10.ABC中,点MN满足2,若xy,则x________y________.答案  -解析 如图,在ABC中,=-=-(),所以xy=-. 组 能力关1.(2019·江西师大附中高考模拟)已知P{a|a(1,0)m(0,1)mR}Q{b|b(1,1)n(1,1)nR}是两个向量集合,则PQ等于(  )A.{(1,1)}  B{(1,1)}C.{(1,0)}  D{(0,1)}答案 A解析 a(xy),则P(xy)集合P是直线x1上的点的集合.同理,集合Q是直线xy2上的点的集合,即P{(xy)|x1yR}Q{(xy)|xy20}PQ{(1,1)}.故选A.2.(2019·山东师范大学附中模拟)ABC中,AB2BC3ABC60°ADBC边上的高,OAD的中点,若λμ,则λμ(  )A.1   B.  C.   D.答案 D解析 ABD中,BDAB1.BC3,所以BDBC..OAD的中点,λμλμλμ.3.(2020·南充摸底)原点OABC内一点,顶点Ax轴上,AOB150°BOC90°||2||1||3,若λμ,则(  )A.   B. C.-   D.答案 D解析 建立如图所示的直角坐标系,A(20)BC因为λμ由向量相等的坐标表示可得解得.4.(2019·湖北省武汉市武昌区高考数学模拟)已知点C为扇形AOB的弧上任意一点,且AOB120°,若λμ(λμR),则λμ的取值范围为(  )A.[2,2]  B(1]C.[1]  D[1,2]答案 D解析 设半径为1,由已知可设OBx轴的正半轴,O为坐标原点,建立直角坐标系,则AB(1,0)C(cosθsinθ),有λμ(λμR),即(cosθsinθ)λμ(1,0),整理得-λμcosθλsinθ,解得λμcosθ,则λμcosθsinθcosθ2sin,易知λμ2sin上单调递增,在上单调递减,由单调性易得其值域为[1,2].5.已知梯形ABCD,其中ABDC,且DC2AB,三个顶点A(1,2)B(2,1)C(4,2),则点D的坐标为________答案 (2,4)解析 在梯形ABCD中,DC2ABABDC2.设点D的坐标为(xy)(4x,2y)(1,-1)(4x,2y)2(1,-1)解得故点D的坐标为(2,4).6.(2019·安徽省马鞍山二中高考模拟)已知向量(1sinα1)(3,1)(2cosα),若BCD三点共线,则tan(2019πα)________.答案 2解析 BCD三点共线,xx(),即(2cosα)x(4sinα),则x,即cosαsinα,得tanα2tan(2019πα)tan(α)=-tanα=-2. 

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map