人教版九年级上册21.3 实际问题与一元二次方程示范课课件ppt
展开1.会分析实际问题(传播问题)中的数量关系并会列一元二次方程.(重点)2.正确分析问题(传播问题)中的数量关系.(难点)3.会找出实际问题(传播问题等)中的相等关系并建模解决问题.
传染病,一传十, 十传百… …
引例:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?
分析 :设每轮传染中平均一个人传染了x个人. 传染源记作小明,其传染示意图如下:
第1轮传染后人数x+1
第2轮传染后人数x(x+1)+x+1
注意:不要忽视小明的二次传染
x1= , x2= .
根据示意图,列表如下:
答:平均一个人传染了________个人.
解:设每轮传染中平均一个人传染了x个人.
注意:一元二次方程的解有可能不符合题意,所以一定要进行检验.
1+x+x(1+x)=(1+x)2
想一想:如果按照这样的传染速度,三轮传染后有多少人患流感?
第2种做法 以第2轮传染后的人数121为传染源,传染一次后就是:121(1+x)=121(1+10)=1331人.
第1种做法 以1人为传染源,3轮传染后的人数是:(1+x)3=(1+10)3=1331人.
思考:如果按这样的传染速度,n轮后传染后有多少人患了流感?
经过n轮传染后共有 (1+x)n 人患流感.
(1+x)2+(1+x)2∙x=
例1:某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?
解:设每个支干长出x个小分支,
则 1+x+x2=91
x1=9,x2=-10(不合题意,舍去)
答:每个支干长出9个小分支.
1.在分析引例和例1中的数量关系时它们有何区别?
每个树枝只分裂一次,每名患者每轮都传染.
2.解决这类传播问题有什么经验和方法?
(1)审题,设元,列方程,解方程,检验,作答;(2)可利用表格梳理数量关系;(3)关注起始值、新增数量,找出变化规律.
运用一元二次方程模型解决实际问题的步骤有哪些?
例2:某种电脑病毒传播速度非常快,如果一台电脑被感染,经过两轮感染后就会有 100 台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,4 轮感染后,被感染的电脑会不会超过 7000 台?
解:设每轮感染中平均一台电脑会感染 x 台电脑,则 1+x+x(1+x)=100,即(1+x)2=100. 解得 x1=9,x2=-11(舍去).∴x=9.
4轮感染后,被感染的电脑数为(1+x)4=104>7000.
答:每轮感染中平均每一台电脑会感染 9 台电脑,4 轮感染后,被感染的电脑会超过 7000 台.
1.电脑勒索病毒的传播非常快,如果开始有6台电脑被感染,经过两轮感染后共有2400台电脑被感染. 每轮感染中平均一台电脑会感染几台电脑?
解:设每轮感染中平均一台电脑会感染x台电脑.
答:每轮感染中平均一台电脑会感染8台电脑; 第三轮感染中,被感染的电脑台数不会超过700台.
解得x1=19 或 x2=-21 (舍去)
依题意 60+60x+60x (1+x) =2400
60 (1+x)2 =2400
2.某种细胞细胞分裂时,每个细胞在每轮分裂中分成两个细胞.(1)经过三轮分裂后细胞的个数是 .(2)n轮分裂后,细胞的个数共是 .
1.元旦将至,九年级一班全体学生互赠贺卡,共赠贺卡1980张,问九年级一班共有多少名学生?设九年级一班共有x名学生,那么所列方程为( ) A.x2=1980 B. x(x+1)=1980 C. x(x-1)=1980 D.x(x-1)=19802.有一根月季,它的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干、小分支的总数是73,设每个枝干长出x个小分支,根据题意可列方程为( ) A.1+x+x(1+x)=73 B.1+x+x2=73 C.1+x2 =73 D.(1+x)2=73
3.早期,甲肝流行,传染性很强,曾有2人同时患上甲肝.在一天内,一人平均能传染x人,经过两天传染后128人患上甲肝,则x的值为( )?
A.10 B.9 C.8 D.7
4.为了宣传环保,小明写了一篇倡议书,决定用微博转发的方式传播,他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发倡议书,每个好友转发倡议书之后,又邀请n个互不相同的好友转发倡议书,以此类推,已知经过两轮传播后,共有111个人参与了传播活动,则n=______.
5.某校初三各班进行篮球比赛(单循环制),每两班之间共比赛了6场,求初三有几个班?
解:初三有x个班,根据题意列方程,得
化简,得 x2-x-12=0
解方程,得 x1=4, x2=-3(舍去)
分析:设每轮分裂中平均每个有益菌可分裂出x个有益菌
6.某生物实验室需培育一群有益菌,现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后共有多少个有益菌?
解:设每个有益菌一次分裂出x个有益菌
60+60x+60(1+x)x=24000
x1=19,x2=-21(舍去)
∴每个有益菌一次分裂出19个有益菌.
三轮后有益菌总数为 24000×(1+19)=480000.
7.甲型流感病毒的传染性极强,某地因1人患了甲型流感没有及时隔离治疗,经过两天的传染后共有9人患了甲型流感,每天平均一个人传染了几人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型流感?
解:设每天平均一个人传染了x人,
解得 x1=-4 (舍去),x2=2.
答:每天平均一个人传染了2人,这个地区一共将会有2187人患甲型流感.
1+x+x(1+x)=9,
9(1+x)5=9(1+2)5=2187,
(1+x)7= (1+2)7=2187.
与列一元一次方程解决实际问题基本相同.不同的地方是要检验根的合理性.
数量关系:第一轮传播后的量=传播前的量× (1+传播速度)第二轮传播后的量=第一轮传播后的量× (1+传播速度)=传播前的量× (1+传播速度)2
关键要设数位上的数字,要准确地表示出原数.
甲和乙握手与乙和甲握手在同一次进行,所以总数要除以2.
甲送乙照片与乙送甲照片是要两张照片,故总数不要除以2.
人教版21.3 实际问题与一元二次方程课文内容ppt课件: 这是一份人教版21.3 实际问题与一元二次方程课文内容ppt课件,共18页。
初中数学21.3 实际问题与一元二次方程示范课课件ppt: 这是一份初中数学<a href="/sx/tb_c10284_t3/?tag_id=26" target="_blank">21.3 实际问题与一元二次方程示范课课件ppt</a>,共16页。PPT课件主要包含了人教版九年级上,第一次成绩,第二次成绩,第三次成绩,75分,下降率,下降前的量,×100%,现在成本,一年前成本等内容,欢迎下载使用。
人教版九年级上册21.3 实际问题与一元二次方程精品ppt课件: 这是一份人教版九年级上册21.3 实际问题与一元二次方程精品ppt课件