所属成套资源:【讲通练透】2025年新高考数学一轮复习(新教材,含2024高考真题)
- 第03讲 等式与不等式的性质(五大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考) 课件 1 次下载
- 第04讲 基本不等式及其应用(十八大题型)(练习)-2025年高考数学一轮复习讲练测(新教材新高考) 试卷 1 次下载
- 第04讲 基本不等式及其应用(十八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考) 课件 1 次下载
- 第05讲 一元二次不等式与其他常见不等式解法(十大题型)(练习)-2025年高考数学一轮复习讲练测(新教材新高考) 试卷 1 次下载
- 第05讲 一元二次不等式与其他常见不等式解法(十大题型)(讲义)-2025年高考数学一轮复习讲练测(新教材新高考) 试卷 1 次下载
第04讲 基本不等式及其应用(十八大题型)(讲义)-2025年高考数学一轮复习讲练测(新教材新高考)
展开
这是一份第04讲 基本不等式及其应用(十八大题型)(讲义)-2025年高考数学一轮复习讲练测(新教材新高考),文件包含第04讲基本不等式及其应用十八大题型讲义原卷版docx、第04讲基本不等式及其应用十八大题型讲义解析版docx等2份试卷配套教学资源,其中试卷共73页, 欢迎下载使用。
\l "_Tc166569082" 01 考情透视·目标导航 PAGEREF _Tc166569082 \h 2
\l "_Tc166569083" 02 知识导图·思维引航 PAGEREF _Tc166569083 \h 3
\l "_Tc166569084" 03 考点突破·题型探究 PAGEREF _Tc166569084 \h 4
\l "_Tc166569085" 知识点1:基本不等式 PAGEREF _Tc166569085 \h 4
\l "_Tc166569086" 解题方法总结 PAGEREF _Tc166569086 \h 4
\l "_Tc166569087" 题型一:基本不等式及其应用 PAGEREF _Tc166569087 \h 5
\l "_Tc166569088" 题型二:直接法求最值 PAGEREF _Tc166569088 \h 7
\l "_Tc166569089" 题型三:常规凑配法求最值 PAGEREF _Tc166569089 \h 7
\l "_Tc166569090" 题型四:化为单变量法 PAGEREF _Tc166569090 \h 8
\l "_Tc166569091" 题型五:双换元求最值 PAGEREF _Tc166569091 \h 8
\l "_Tc166569092" 题型六:“1”的代换求最值 PAGEREF _Tc166569092 \h 9
\l "_Tc166569093" 题型七:齐次化求最值 PAGEREF _Tc166569093 \h 10
\l "_Tc166569094" 题型八:利用基本不等式证明不等式 PAGEREF _Tc166569094 \h 10
\l "_Tc166569095" 题型九:利用基本不等式解决实际问题 PAGEREF _Tc166569095 \h 12
\l "_Tc166569096" 题型十:与 a+b、平方和、 ab有关问题的最值 PAGEREF _Tc166569096 \h 13
\l "_Tc166569097" 题型十一:三角换元法 PAGEREF _Tc166569097 \h 14
\l "_Tc166569098" 题型十二:多次运用基本不等式 PAGEREF _Tc166569098 \h 15
\l "_Tc166569099" 题型十三:待定系数法 PAGEREF _Tc166569099 \h 15
\l "_Tc166569100" 题型十四:多元均值不等式 PAGEREF _Tc166569100 \h 16
\l "_Tc166569101" 题型十五:万能K法 PAGEREF _Tc166569101 \h 16
\l "_Tc166569102" 题型十六:与基本不等式有关的恒(能)成立问题 PAGEREF _Tc166569102 \h 17
\l "_Tc166569103" 题型十七:基本不等式与其他知识交汇的最值问题 PAGEREF _Tc166569103 \h 17
\l "_Tc166569104" 题型十八:整体配凑法 PAGEREF _Tc166569104 \h 18
\l "_Tc166569105" 04真题练习·命题洞见 PAGEREF _Tc166569105 \h 19
\l "_Tc166569106" 05课本典例·高考素材 PAGEREF _Tc166569106 \h 19
\l "_Tc166569107" 06易错分析·答题模板 PAGEREF _Tc166569107 \h 21
\l "_Tc166569108" 易错点:忽视基本不等式应用条件 PAGEREF _Tc166569108 \h 21
\l "_Tc166569109" 答题模板:利用基本不等式求最值(和定或积定) PAGEREF _Tc166569109 \h 21
知识点1:基本不等式
如果,那么,当且仅当时,等号成立.其中,叫作的算术平均数,叫作的几何平均数.即正数的算术平均数不小于它们的几何平均数.
基本不等式1:若,则,当且仅当时取等号;
基本不等式2:若,则(或),当且仅当时取等号.
注意(1)基本不等式的前提是“一正”“二定”“三相等”;其中“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指满足等号成立的条件.(2)连续使用不等式要注意取得一致.
解题方法总结
1、几个重要的不等式
(1)
(2)基本不等式:如果,则(当且仅当“”时取“”).
特例:(同号).
(3)其他变形:
①(沟通两和与两平方和的不等关系式)
②(沟通两积与两平方和的不等关系式)
③(沟通两积与两和的不等关系式)
④重要不等式:
即调和平均值几何平均值算数平均值平方平均值(注意等号成立的条件).
2、均值定理
已知.
(1)如果(定值),则(当且仅当“”时取“=”).即“和为定值,积有最大值”.
(2)如果(定值),则(当且仅当“”时取“=”).即积为定值,和有最小值”.
3、常见求最值模型
模型一:,当且仅当时等号成立.
模型二:,当且仅当时等号成立.
模型三:,当且仅当时等号成立.
模型四:,当且仅当时等号成立.
题型一:基本不等式及其应用
【典例1-1】下列不等式证明过程正确的是( )
A.若,则
B.若x>0,y>0,则
C.若x<0,则
D.若x<0,则
【典例1-2】(2024·辽宁·二模)数学命题的证明方式有很多种.利用图形证明就是一种方式.现有如图所示图形,在等腰直角三角形中,点O为斜边AB的中点,点D为斜边AB上异于顶点的一个动点,设,,用该图形能证明的不等式为( ).
A.B.
C.D.
【方法技巧】
熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证.
【变式1-1】下列结论正确的是( )
A.当时,B.当时,的最小值是
C.当时,D.当时,的最小值为1
【变式1-2】(2024·黑龙江哈尔滨·三模)已知x,y都是正数,且,则下列选项不恒成立的是( )
A.B.
C.D.
【变式1-3】给出下面四个推导过程:
①∵a,b为正实数,∴;
②∵x,y为正实数,∴;
③∵,,∴;
④∵,,∴.
其中正确的推导为( )
A.①②B.②③C.③④D.①④
题型二:直接法求最值
【典例2-1】若实数满足,则的最小值为 .
【典例2-2】(2024·湖北孝感·模拟预测)的最小值为 .
【方法技巧】
直接利用基本不等式求解,注意取等条件.
【变式2-1】(2024·上海崇明·二模)已知正实数a、b满足,则的最小值等于 .
【变式2-2】(2024·天津南开·一模)已知实数,则的最小值为 .
题型三:常规凑配法求最值
【典例3-1】函数的最大值是( )
A.2B.C.D.
【典例3-2】(2024·广东·模拟预测)已知,且,则的最小值为 ,此时 .
【方法技巧】
1、通过添项、拆项、变系数等方法凑成和为定值或积为定值的形式.
2、注意验证取得条件.
【变式3-1】若,则的最小值为 .
【变式3-2】函数()的最小值为 .
【变式3-3】(2024·高三·天津河北·期末)已知,则的最小值为 .
题型四:化为单变量法
【典例4-1】(2024·高三·上海·竞赛)若正实数满足,则的最小值是 .
【典例4-2】(2024·天津河东·一模)若,则的最小值为 .
【方法技巧】
化为单变量法就是对应不等式中的两元问题,用一个参数表示另一个参数,再利用基本不等式进行求解.解题过程中要注意“一正,二定,三相等”这三个条件缺一不可!
【变式4-1】(2024·陕西西安·三模)已知,,则的最小值为 .
【变式4-2】已知实数满足,则的最小值是 .
题型五:双换元求最值
【典例5-1】设为正实数,且,则的最小值为 .
【典例5-2】(2024·江苏南京·三模)若实数满足,则的最大值为 .
【方法技巧】
若题目中含是求两个分式的最值问题,对于这类问题最常用的方法就是双换元,分布运用两个分式的分母为两个参数,转化为这两个参数的不等关系.
1、代换变量,统一变量再处理.
2、注意验证取得条件.
【变式5-1】若非零实数,满足,则的最大值为 .
【变式5-2】(2024·全国·模拟预测)已知,则的取值范围是 .
题型六:“1”的代换求最值
【典例6-1】已知,,且,则的最小值为 .
【典例6-2】(2024·内蒙古呼和浩特·一模)已知实数,且,则的最小值是 .
【方法技巧】
1的代换就是指凑出1,使不等式通过变形出来后达到运用基本不等式的条件,即积为定值,凑的过程中要特别注意等价变形.
1、根据条件,凑出“1”,利用乘“1”法.
2、注意验证取得条件.
【变式6-1】(2024·全国·模拟预测)已知,,且,则的最小值是 .
【变式6-2】(2024·河南·三模)在中,角的对边分别为,若,则的最小值为 .
【变式6-3】(2024·陕西咸阳·一模)已知,且,则的最小值为 .
题型七:齐次化求最值
【典例7-1】已知,,,则( )
A.S的最大值是B.S的最大值是
C.S的最大值是D.S的最大值是
【典例7-2】已知正实数满足,则的最小值为 .
【方法技巧】
齐次化就是含有多元的问题,通过分子、分母同时除以得到一个整体,然后转化为运用基本不等式进行求解.
【变式7-1】(四川省成都市第七中学2024届高三三诊模拟考试文科数学试卷)设,若,则实数的最大值为( )
A.B.4C.D.
【变式7-2】已知,,,则的最小值是( )
A.2B.C.D.
题型八:利用基本不等式证明不等式
【典例8-1】(2024·全国·模拟预测)已知正实数满足.求证:
(1);
(2).
【典例8-2】(2024·陕西西安·二模)已知函数的最小值是.
(1)求的值;
(2)若,,且,证明:.
【方法技巧】
类似于基本不等式的结构的不等式的证明可以利用基本不等式去组合、分解、运算获得证明.
【变式8-1】(2024·高三·陕西西安·期中)已知,且.
(1)求的最大值与最小值;
(2)证明:.
【变式8-2】(2024·河南·模拟预测)已均为正数,且,证明:
(1);
(2).
【变式8-3】(1)设且.证明:;
(2)已知为正数,且满足.证明:
题型九:利用基本不等式解决实际问题
【典例9-1】(2024·广东湛江·二模)当,时,.这个基本不等式可以推广为当x,时,,其中且,.考虑取等号的条件,进而可得当时,.用这个式子估计可以这样操作:,则.用这样的方法,可得的近似值为( )
A.3.033B.3.035C.3.037D.3.039
【典例9-2】(2024·云南楚雄·模拟预测)足球是一项深受人们喜爱的体育运动.如图,现有一个11人制的标准足球场,其底线宽,球门宽,且球门位于底线的中间,在某次比赛过程中,攻方球员带球在边界线上的点处起脚射门,当最大时,点离底线的距离约为( )
A.B.C.D.
【方法技巧】
1、理解题意,设出变量,建立函数模型,把实际问题抽象为函数的最值问题.
2、注意定义域,验证取得条件.
3、注意实际问题隐藏的条件,比如整数,单位换算等.
【变式9-1】(2024·湖南·一模)某农机合作社于今年初用98万元购进一台大型联合收割机,并立即投入生产.预计该机第一年(今年)的维修保养费是12万元,从第二年起,该机每年的维修保养费均比上一年增加4万元.若当该机的年平均耗费最小时将这台收割机报废,则这台收割机的使用年限是( )
A.6年B.7年C.8年D.9年
【变式9-2】(2024·黑龙江哈尔滨·一模)已知某商品近期价格起伏较大,假设第一周和第二周的该商品的单价分别为m元和n元,甲、乙两人购买该商品的方式不同,甲每周购买100元的该商品,乙每周购买20件该商品,若甲、乙两次购买平均单价分别为,则( )
A.B.C.D.的大小无法确定
【变式9-3】(2024·内蒙古呼和浩特·一模)小明在春节期间,预约了正月初五上午去美术馆欣赏油画,其中有一幅画吸引了众多游客驻足观赏,为保证观赏时可以有最大视角,警卫处的同志需要将警戒线控制在距墙多远处最合适呢?(单位:米,精确到小数点后两位)已知该画挂在墙上,其上沿在观赏者眼睛平视的上方3米处,其下沿在观赏者眼睛平视的上方1米处.( )
A.1.73B.1.41C.2.24D.2.45
题型十:与 a+b、平方和、 ab有关问题的最值
【典例10-1】(多选题)(2024·湖南·模拟预测)已知,则( )
A.B.
C.D.
【典例10-2】(多选题)(2024·高三·海南·期末)已知,且,则( )
A.B.或
C.D.或
【方法技巧】
利用基本不等式变形求解
【变式10-1】(多选题)若,,,则下列不等式恒成立的是( )
A.B.
C.D.
【变式10-2】(多选题)已知正数满足,则( )
A.B.
C.D.
题型十一:三角换元法
【典例11-1】(多选题)若x,y满足,则( ).
A.B.
C.D.
【典例11-2】已知非负实数,满足,则的最大值为 .
【变式11-1】已知实数满足,则的最大值为 .
【方法技巧】
出现平方和结构()形式,引入三角函数表示和.
【变式11-2】已知,满足,则的最小值为( )
A.B.C.1D.
【变式11-3】(2024届广东省惠州市大亚湾区普通高中毕业年级联合模拟考试(一)数学试卷)已知为函数图象上一动点,则的最大值为 .
【变式11-4】(2024·高三·重庆·开学考试)已知实数满足,则的最大值为 ;的取值范围为 .
题型十二:多次运用基本不等式
【典例12-1】(2024·全国·模拟预测)已知,,且,则的最小值为 .
【典例12-2】已知正实数、、满足,则的最小值是( )
A.B.C.D.
【方法技巧】
多次运用不等式求最值,取到最值时要注意的是每次取等的条件是否一致.
【变式12-1】(2024·天津·一模)已知,则的最小值为 .
【变式12-2】对任意的正实数,满足,则的最小值为 .
题型十三:待定系数法
【典例13-1】(2024·高三·河北邢台·期末)设,若,则的最小值为( )
A.6B.C.D.4
【典例13-2】已知实数,,满足,则的最大值为
【方法技巧】
出现结构形式,通常用待定系数法.
【变式13-1】已知x,y,z为正实数,则的最大值为
A.1B.2C.D.
【变式13-2】为正整数,求的最小值为 .
题型十四:多元均值不等式
【典例14-1】已知,则的最小值为 .
【典例14-2】函数的最小值是( )
A.B.3C.D.
【方法技巧】
,为正数.
【变式14-1】已知xyz+y+z=12,则的最大值为 .
【变式14-2】设正实数满足,则的最小值为 .
题型十五:万能K法
【典例15-1】(2024·安徽·模拟预测)已知正实数满足,则的取值范围为 .
【典例15-2】(2024·湖南衡阳·模拟预测)已知实数,满足,则的最大值为( )
A.B.C.D.
【方法技巧】
利用一元二次方程有实数根时.
【变式15-1】若正数,,满足,则的最大值是 .
【变式15-2】已知实数x,y,z满足,则下列说法错误的是( )
A.的最大值是B.的最大值是
C.的最大值是D.的最大值是
题型十六:与基本不等式有关的恒(能)成立问题
【典例16-1】已知,且,若恒成立,则实数的取值范围是( )
A.B.C.D.
【典例16-2】已知,,且,若不等式恒成立,则a的取值范围是( )
A.B.
C.D.
【方法技巧】
,使得 ,等价于 ,,使得 ,等价于
【变式16-1】(2024·辽宁·模拟预测)若关于的不等式对任意恒成立,则正实数的取值集合为 .
【变式16-2】(2024·山西晋中·二模)若对任意,恒成立,则实数的取值范围是 .
题型十七:基本不等式与其他知识交汇的最值问题
【典例17-1】(2024·上海杨浦·一模)已知(、为正整数)对任意实数都成立,若,则的最小值为 .
【典例17-2】(2024·四川南充·二模)在中,a,b,c分别为内角A,B,C的对边.已知.则的最大值为
【方法技巧】
基本不等式经常与解三角形、数列、立体几何、解析几何等知识汇合求最值.
【变式17-1】(2024·宁夏银川·二模)已知,P是椭圆上的任意一点,则的最大值为 .
【变式17-2】(2024·全国·模拟预测)已知正三棱锥满足,则该三棱锥侧面积的最大值为 .
题型十八:整体配凑法
【典例18-1】(2024·辽宁葫芦岛·二模)若,则的最小值是 ( )
A.B.1
C.2D.
【典例18-2】(2024·山东潍坊·二模)已知正实数a,b满足,则的最大值为( )
A.B.C.D.2
【方法技巧】
整体配凑法原理是把目标当作一个整体,然后利用基本不等式求最值.
【变式18-1】(2024·高三·湖北·开学考试)已知正数满足,则的最大值是 .
【变式18-2】(2024·全国·模拟预测)在解决问题“已知正实数满足,求的取值范围”时,可通过重新组合,利用基本不等式构造关于的不等式,通过解不等式求范围.具体解答如下:
由,得,即,解得的取值范围是.
请参考上述方法,求解以下问题:
已知正实数满足,则的取值范围是 .
【变式18-3】已知为正实数且,则的取值范围为 .
1.(2022年高考全国甲卷数学(文)真题)已知,则( )
A.B.C.D.
2.(2021年浙江省高考数学试题)已知是互不相同的锐角,则在三个值中,大于的个数的最大值是( )
A.0B.1C.2D.3
3.(2021年全国高考乙卷数学(文)试题)下列函数中最小值为4的是( )
A.B.
C.D.
1.(1)已知,求的最小值;
(2)求的最大值.
2.某公司建造一间背面靠墙的房屋,地面面积为,房屋正面每平方米的造价为元,房屋侧面每平方米的造价为元,屋顶的造价为元,如果墙高为,且不计房屋背面和地面的费用,那么怎样设计房屋能使总造价最低?最低总造价是多少?
3.已知、、都是正数,求证:.
4.设矩形ABCD(AB>AD)的周长为24,把△ABC沿AC向△ADC折叠,AB折过去后交DC于点P,设AB=x,求△ADP的最大面积及相应x的值.
5.一家商店使用一架两臂不等长的天平称黄金,一位顾客到店里购买黄金,售货员先将的砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将的砝码放在天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次称得的黄金交给顾客.你认为顾客购得的黄金是小于,等于,还是大于?为什么?
易错点:忽视基本不等式应用条件
易错分析: 基本不等式取等号的条件是“一正,二定,三相等”.在解题过程中,一定要先检查取等的三个条件是否成立.常见的技巧是①如果积或和不是定值,则构造“定值”;②若是不能保证,可构造“正数”;③若等号不能成立,可根据“对勾函数”图象,利用函数的单调性求解.
答题模板:利用基本不等式求最值(和定或积定)
1、模板解决思路
在求代数式的最值,特别是求代数式的和或积的最值时,通常根据已知条件和所求问题凑配出和或积为定值的两个形式,然后利用基本不等式求解.利用基本不等式求最值需注意“一正、二定、三相等”.
2、模板解决步骤
第一步:将所求代数式凑配出两个代数式的和(或积)形式,且两个代数式的积(或和)为定值.
第二步:验证两个代数式均为正数.
第三步:应用基本不等式将变形后的代数式进行放缩.
第四步:验证取等的条件.
【易错题1】已知实数满足,则( )
A.有最大值B.有最小值
C.有最小值6D.有最大值6
【易错题2】下列命题中错误的是( )
A.当时,B.当时,的最小值为2
C.当时,D.当时,
【易错题3】函数的最小值为( )
A.B.C.D.考点要求
考题统计
考情分析
(1)了解基本不等式的推导过程.
(2)会用基本不等式解决简单的最值问题.
(3)理解基本不等式在实际问题中的应用.
2022年II卷第12题,5分
2021年乙卷第8题,5分
2020年天津卷第14题,5分
高考对基本不等式的考查比较稳定,考查内容、频率、题型难度均变化不大,应适当关注利用基本不等式大小判断、求最值和求取值范围的问题.
复习目标:
1、掌握基本不等式的内容.
2、会用基本不等式解决常考的最大值或最小值问题.
3、会用基本不等式解决实际问题.
相关试卷
这是一份第05讲 椭圆及其性质(九大题型)(讲义)-2025年高考数学一轮复习讲练测(新教材新高考),文件包含第05讲椭圆及其性质九大题型讲义原卷版docx、第05讲椭圆及其性质九大题型讲义解析版docx等2份试卷配套教学资源,其中试卷共108页, 欢迎下载使用。
这是一份第04讲 数列的通项公式(十八大题型)(讲义)-2025年高考数学一轮复习讲练测(新教材新高考),文件包含第04讲数列的通项公式十八大题型讲义原卷版docx、第04讲数列的通项公式十八大题型讲义解析版docx等2份试卷配套教学资源,其中试卷共98页, 欢迎下载使用。
这是一份第08讲 函数模型及其应用(五大题型)(讲义)-2025年高考数学一轮复习讲练测(新教材新高考),文件包含第08讲函数模型及其应用五大题型讲义原卷版docx、第08讲函数模型及其应用五大题型讲义解析版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。