所属成套资源:2024年人教版数学八年级上册同步讲义 (2份,原卷版+解析版)
人教版(2024)八年级上册12.3 角的平分线的性质练习题
展开
这是一份人教版(2024)八年级上册12.3 角的平分线的性质练习题,文件包含2024年人教版数学八年级上册同步讲义第十二章第03讲角平分线的性质原卷版docx、2024年人教版数学八年级上册同步讲义第十二章第03讲角平分线的性质解析版docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。
知识点01 角平分线的定义及其性质
角平分线的定义:
角的内部把角分成两个 的角的射线这是个角的角平分线。
角平分线的性质:
性质1:平分角。
即若OC是∠AOB的平分线,则 。且他们都等于∠AOB的 。
性质2:角平分线上任意一点到角的两边的距离 。
即若OC是∠AOB的平分线,P是0C上一点,且PD⊥OB于点D,PE⊥OA于点E,则有 。
题型考点:①利用角平分线的性质求线段长度或距离。②利用角平分线的性质求面积。
【即学即练1】
1.如图,在△ABC中,∠C=90°,BC=9,,AD平分∠BAC,则点D到AB的距离为( )
A.1B.2C.3D.4
【即学即练2】
2.如图,AB∥CD,BP和CP平分∠ABC和∠DCB,AD过点P且与直线AB垂直.若AD=8,则点P到BC的距离是( )
A.8B.6C.4D.2
【即学即练3】
3.如图,AD是△ABC中∠BAC的平分线,DE⊥AB,交AB于点E,DF⊥AC,交AC于点F,若DE=2,AC=4,则△ADC的面积是( )
A.4B.6C.8D.10
【即学即练4】
4.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,CD=3,则△ABD的面积为( )
A.60B.30C.15D.10
知识点02 角平分线的尺规作图
作已知角的角平分线:
步骤一:以 为圆心,一定长度为半径画圆弧,交角的两边与点M和点N。
步骤二:以 为圆心, MN的长度为半径画圆弧,两弧交于点P。
步骤三:连接OP即为角平分线
步骤一 步骤二 步骤三
证明上图中的OP是角平分线:
连接MP,NP
由作图过程可知,OM ON,MP NP。
在△OMP与△ONP中
∴△OMP≌△ONP
∴∠MOP= ∴OP是∠AOB的角平分线。
题型考点:①尺规作图为角平分线的依据。 ②尺规作图后的有关计算。 ③作图及其实际应用。
【即学即练1】
5.数学课上陈老师要求学生利用尺规作图,作一个已知角的角平分线,并保留作图痕迹.学生小敏的作法是:如图,∠AOB是已知角,以O为圆心,任意长为半径作弧,与OA、OB分别交于N、M;再分别以N、M为圆心,大于MN的长为半径作弧,交于点C;作射线OC;则射线OC是∠AOB的角平分线.小敏作图的依据是( )
A.SASB.ASAC.AASD.SSS
【即学即练2】
6.如图,在Rt△ABC中,∠C=90°,以点A为圆心,适当长为半径作弧,分别交AB,AC于点D,E,再分别以点D,E,为圆心,以大于DE的长度为半径作弧,两弧交于点F,作射线AF交BC于点G,若AB=12,CG=3,则△ABG的面积是( )
A.12B.18C.24D.36
【即学即练3】
7.如图,l1、l2交于A点,请确定M点,使它到l1、l2的距离相等.(用直尺和圆规)
【即学即练4】
8.如图,三条公路两两相交,现计划修建一个油库.
(1)如果要求油库到两条公路AB,AC的距离都相等,那么如何选择油库的位置?
(2)如果要求油库到这三条公路的距离都相等,那么如何选择油库的位置?
知识点03 角平分线的判定
角平分线的判定的内容:
角的内部到角两边距离相等的点一定在 上。
数学语言:
点P在∠AOB的内部,PE⊥OA于E,PD⊥OB于D,且PE=PD,则点P在∠AOB的 上。
即:∵PE⊥OA于E,PD⊥OB于D,且PE=PD
∴∠AOC=∠BOC
题型考点:角平分线的判定证明。
【即学即练1】
9.如图,在四边形ABCD中,∠B=∠C=90°,点E为BC的中点,且AE平分∠BAD.求证:DE是∠ADC的平分线.
【即学即练2】
10.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF
求证:AD平分∠BAC.
知识点04 三角形的角平分线性质
三角形角平分线的性质:
三角形一个角的角平分线分得的两个三角形的面积比等于这个角的两边
的比,也等于这个角对边分得的两条线段的比。
即如图:AD是△ABC的平分线。
则= = 。
特别提示:分别以AB和AC为底、BD和CD为底表示出两个三角形的面积,然后比即可得出。
题型考点:利用三角形角平分线的性质进行面积有关的计算。
【即学即练1】
11.如图,在△ABC中,∠A=90°,AB=2,BC=5,BD是∠ABC的平分线,设△ABD和△BDC的面积分别是S1,S2,则S1:S2的值为( )
A.5:2B.2:5C.1:2D.1:5
【即学即练2】
12.如图,△ABC的三边AC、BC、AB的长分别是8、12、16,点O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC的值为( )
A.4:3:2B.5:3:2C.2:3:4D.3:4:5
题型01 角平分线的性质
【典例1】
如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=( )
A.40°B.45°C.50°D.60°
【典例2】
如图,在△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB,若BC=7,BD=4,则DE的长为( )
A.5B.4C.3D.2
【典例3】
如图,在△ABC中,∠C=90°,∠1=∠2,BC=16cm,点D到AB的距离为6cm,则BD的长为( )
A.7cmB.8cmC.9cmD.10cm
【典例4】
如图,点P是△ABC的三个内角平分线的交点,若△ABC的周长为24cm,面积为36cm2,则点P到边BC的距离是( )
A.8cmB.3cmC.4cmD.6cm
【典例5】
如图,△ABC的周长为12cm,∠ABC、∠ACB的平分线交于点O,OD⊥BC于点D,且OD=2cm,则△ABC的面积为 cm2.
典例5 典例6
【典例6】
如图,BD是△ABC的角平分线,AB=8,BC=4,且S△ABC=36,则△DBC的面积是 .
题型02 角平分线的作图
【典例1】
观察图中尺规作图痕迹,下列说法错误的是( )
A.OE是∠AOB的平分线
B.OC=OD
C.点C、D到OE的距离不相等
D.∠AOE=∠BOE
【典例2】
如图,已知∠AOB,按照以下步骤作图:①以点O为圆心,任意长为半径画分别交OA,OB于点C,D;②分别以点C,D为圆心,以大于CD的长为半径画弧,两弧交于点E;③连接OE,CE,DE,CD.下列结论错误的是( )
A.∠OCE=∠ODE B.∠ECD=∠OCD
C.∠AOE=∠BOE D.CD⊥OE
【典例3】
如图,在△ABC中,AB=AC,按如下步骤作图:以点A为圆心、适当长度为半径作弧,分别交AB、AC于点M、N;分别以点M、N为圆心、大于MN的长为半径作弧,两弧相交于点F,连接AF并延长,交BC于点E.下列结论不一定成立的是( )
A.∠ABC=∠ACBB.BE=CEC.AE⊥BCD.∠BAE=∠B
【典例4】
如图,在△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心、适当长为半径作圆弧,分别交边AC、AB于点M、N;②分别以点M和点N为圆心、大于的长为半径作圆弧,在∠BAC内,两弧交于点P;③作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是( )
A.15B.30C.45D.60
题型03 角平分线的性质的实际应用
【典例1】
为促进旅游发展,某地要在三条公路围成的一块平地上修建一个度假村,如图所示,若要使度假村到三条公路的距离相等,则这个度假村应修建在( )
A.△ABC三条高线的交点处
B.△ABC三条中线的交点处
C.△ABC三条角平分线的交点处
D.△ABC三边垂直平分线的交点处
【典例2】
三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果要在三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场可选的位置有( )
A.1处B.2处C.3处D.4处
1.到三角形的三条边距离相等的点( )
A.是三条角平分线的交点B.是三条中线的交点
C.是三条高的交点D.以上答案都不对
2.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E.若△ABC的面积为26,AB=8,BC=5,则DE的长为( )
第2题 第3题
A.1B.2C.3D.4
3.如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为( )
A.15B.30C.12D.10
4.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点.若PA=2,则PQ的长不可能是( )
A.4B.3.5C.2D.1.5
5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,CF⊥AB,交AB于点F,交BE于点D,若BC=8cm,DF=3cm,则△CDB的面积为( )
A.12cm2B.8cm2C.6cm2D.4cm2
6.如图,∠AOB=70°,点C是∠AOB内一点,CD⊥OA于点D,CE⊥OB于点E,且CD=CE,则∠DOC的度数是( )
A.30°B.35°C.40°D.45°
7.如图,AD∥BC,∠ABC的平分线BP与∠BAD的平分线AP相交于点P,作PE⊥AB于点E,若PE=4,则点P到AD与BC的距离之和为( )
A.4B.6C.8D.10
8.如图,△ABC中,AD⊥BC交BC于点D,AE平分∠BAC交BC于点E.过点C作AE的垂线交AE的延长线于点F,交AD的延长线于点G,连接BG,下列结论:
①∠BAD=∠BCG;
②(∠ABD﹣∠ACE);
③∠AGC=∠BAE+∠ACB;
④S△ABD•S△CDG=S△BDG•S△ACD,
其中正确结论的个数是( )
A.1B.2C.3D.4
9.随着人们生活水平的不断提高,汽车逐步进入到千家万户,小红的爸爸想在本镇的三条相互交叉的公路(如图所示),建一个加油站,要求它到三条公路的距离相等,这样可供选择的地址有 处.
10.如图,BD是∠ABC的平分线,DE⊥AB于点E,S△ABC=15cm2,AB=8cm,BC=12cm,则DE= cm.
11.如图,O是△ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若∠BAC=70°,∠BOC= .
12.如图所示,已知△ABC的周长是20,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是 .
13.已知:如图,BD平分∠ABC,点F在AB上,点G在AC上,连接FG、FC,FC与BD相交于点H,∠GFH+∠BHC=180°.
(1)证明:∠1=∠2;
(2)若∠A=55°,∠ABC=80°,求∠FGC.
14.如图,在△ABC中,BD平分∠ABC,CD平分∠ACB,DE⊥AB于点E.
(1)若∠ABC=40°,∠ACB=70°,求∠BDC的度数;
(2)若DE=4,BC=9,求△BCD的面积.
15.已知直线EF与直线AB、CD分别交于E、F两点,∠BEF和∠DFE的角平分线交于点P,且∠BEP+∠DFP=90°.
(1)求证:AB∥CD;
(2)如图2,∠PEF和∠PFM的角平分线交于点Q,求∠Q的度数;
(3)如图3,若∠BEP=60°,延长线段EP得射线EP1,延长线段FP得射线FP2,射线EP1绕点E以每秒15°的速度逆时针旋转360°后停止,射线FP2绕点F以每秒3°的速度顺时针旋转180°以后停止.设它们同时开始旋转,当射线EP1∥FP2时,求满足条件的t的值为多少.
课程标准
学习目标
①角平分线的定义
②角平分线的性质
③角平分线的尺规作图
掌握角平分的定义以及基本性质。
掌握角平分线的性质并能够证明。
掌握角平分线尺规作图的基本原理,并能够利用直尺和圆规进行角平分线作图。
相关试卷
这是一份初中数学人教版(2024)八年级上册第十二章 全等三角形12.2 三角形全等的判定课时训练,文件包含2024年人教版数学八年级上册同步讲义第十二章第02讲全等三角形的判定原卷版docx、2024年人教版数学八年级上册同步讲义第十二章第02讲全等三角形的判定解析版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。
这是一份人教版(2024)八年级上册14.2 乘法公式综合与测试同步达标检测题,文件包含2024年人教版数学八年级上册同步讲义第十四章第03讲乘法公式原卷版docx、2024年人教版数学八年级上册同步讲义第十四章第03讲乘法公式解析版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
这是一份数学八年级上册13.3.1 等腰三角形精品精练,文件包含2024年人教版数学八年级上册同步讲义第十三章第03讲等腰三角形原卷版docx、2024年人教版数学八年级上册同步讲义第十三章第03讲等腰三角形解析版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。