![苏科版九年级数学下册基础知识专项讲练 专题5.36 用二次函数解决问题(一)图形+图形的运动问题(专项练习)(附答案)第1页](http://m.enxinlong.com/img-preview/2/3/16217613/0-1728033057350/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![苏科版九年级数学下册基础知识专项讲练 专题5.36 用二次函数解决问题(一)图形+图形的运动问题(专项练习)(附答案)第2页](http://m.enxinlong.com/img-preview/2/3/16217613/0-1728033057387/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![苏科版九年级数学下册基础知识专项讲练 专题5.36 用二次函数解决问题(一)图形+图形的运动问题(专项练习)(附答案)第3页](http://m.enxinlong.com/img-preview/2/3/16217613/0-1728033057414/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:苏科版九年级数学下册基础知识专项讲练(附答案)【第一部分】
- 苏科版九年级数学下册基础知识专项讲练 专题5.34 二次函数与一元二次方程(培优篇)(专项练习)(附答案) 试卷 0 次下载
- 苏科版九年级数学下册基础知识专项讲练 专题5.35 用二次函数解决问题解题方法专题(例题讲解)(专项练习)(附答案) 试卷 0 次下载
- 苏科版九年级数学下册基础知识专项讲练 专题5.37 用二次函数解决问题(二)拱桥+掷球+喷水问题(专项练习)(附答案) 试卷 0 次下载
- 苏科版九年级数学下册基础知识专项讲练 专题5.38 用二次函数解决问题(三)销售问题(基础篇)(专项练习)(附答案) 试卷 0 次下载
- 苏科版九年级数学下册基础知识专项讲练 专题5.39 用二次函数解决问题(四)销售问题(巩固篇)(专项练习)(附答案) 试卷 0 次下载
苏科版九年级数学下册基础知识专项讲练 专题5.36 用二次函数解决问题(一)图形+图形的运动问题(专项练习)(附答案)
展开
这是一份苏科版九年级数学下册基础知识专项讲练 专题5.36 用二次函数解决问题(一)图形+图形的运动问题(专项练习)(附答案),共35页。
专题5.36 用二次函数解决问题(一)图形+图形运动问题(专项练习)一、单选题1.(2020·湖南长沙·中考真题)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把焦脆而不糊的豆腐块数的百分比称为“可食用率”,在特定条件下,“可食用率”p与加工煎炸的时间t(单位:分钟)近似满足函数关系式:(a,b,c为常数),如图纪录了三次实验数据,根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为( )A.3.50分钟 B.4.05分钟 C.3.75分钟 D.4.25分钟2.(2021·北京·中考真题)如图,用绳子围成周长为的矩形,记矩形的一边长为,它的邻边长为,矩形的面积为.当在一定范围内变化时,和都随的变化而变化,则与与满足的函数关系分别是( )A.一次函数关系,二次函数关系 B.反比例函数关系,二次函数关系C.一次函数关系,反比例函数关系 D.反比例函数关系,一次函数关系3.(2022·四川自贡·中考真题)九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形,等腰三角形(底边靠墙),半圆形这三种方案,最佳方案是( )A.方案1 B.方案2 C.方案3 D.方案1或方案24.(2022·山东菏泽·中考真题)如图,等腰与矩形DEFG在同一水平线上,,现将等腰沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF为止.等腰与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为( )A. B.C. D.5.(2021·辽宁锦州·中考真题)如图,在四边形DEFG中,∠E=∠F=90°,∠DGF=45°,DE=1,FG=3,Rt△ABC的直角顶点C与点G重合,另一个顶点B(在点C左侧)在射线FG上,且BC=1,AC=2,将△ABC沿GF方向平移,点C与点F重合时停止.设CG的长为x,△ABC在平移过程中与四边形DEFG重叠部分的面积为y,则下列图象能正确反映y与x函数关系的是( )A.B.C.D.6.(2021·辽宁朝阳·中考真题)如图,在正方形ABCD中,AB=4,动点M从点A出发,以每秒1个单位长度的速度沿射线AB运动,同时动点N从点A出发,以每秒2个单位长度的速度沿折线AD→DC→CB运动,当点N运动到点B时,点M,N同时停止运动.设AMN的面积为y,运动时间为x(s),则下列图象能大致反映y与x之间函数关系的是( )A.B.C.D.7.(2022·辽宁锦州·中考真题)如图,四边形是边长为的正方形,点E,点F分别为边,中点,点O为正方形的中心,连接,点P从点E出发沿运动,同时点Q从点B出发沿运动,两点运动速度均为,当点P运动到点F时,两点同时停止运动,设运动时间为,连接,的面积为,下列图像能正确反映出S与t的函数关系的是( ) B.C. D.8.(2022·辽宁鞍山·中考真题)如图,在中,,,,,垂足为点,动点从点出发沿方向以的速度匀速运动到点,同时动点从点出发沿射线方向以的速度匀速运动.当点停止运动时,点也随之停止,连接,设运动时间为,的面积为,则下列图象能大致反映与之间函数关系的是( ) B.C. D.9.(2022·全国·九年级专题练习)如图,小明以抛物线为灵感,在平面直角坐标系中设计了一款高OD为14的奖杯,杯体轴截面ABC是抛物线的一部分,则杯口的口径AC为( )A.7 B.8 C.9 D.1010.(2021·内蒙古通辽·中考真题)如图,在矩形中,,,动点P,Q同时从点A出发,点P沿A→B→C的路径运动,点Q沿A→D→C的路径运动,点P,Q的运动速度相同,当点P到达点C时,点Q也随之停止运动,连接.设点P的运动路程为x,为y,则y关于x的函数图象大致是( ) B.D.二、填空题11.(2018·辽宁沈阳·中考真题)如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=_____m时,矩形土地ABCD的面积最大.12.(2020·四川巴中·中考真题)现有一“祥云”零件剖面图,如图所示,它由一个半圆和左右两支抛物线的一部分组成,且关于y轴对称.其中半圆交y轴于点E,直径,;两支抛物线的顶点分别为点A、点B.与x轴分别交于点C、点D;直线BC的解析式为:.则零件中BD这段曲线的解析式为_________.13.(2022·新疆·中考真题)如图,用一段长为的篱芭围成一个一边靠墙的矩形围栏(墙足够长),则这个围栏的最大面积为_______.14.(2019·江苏无锡·中考真题)如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为______.15.(2021·湖北武汉·中考真题)如图(1),在中,,,边上的点从顶点出发,向顶点运动,同时,边上的点从顶点出发,向顶点运动,,两点运动速度的大小相等,设,,关于的函数图象如图(2),图象过点,则图象最低点的横坐标是__________.三、解答题16.(2022·辽宁沈阳·中考真题)如图,用一根长60厘米的铁丝制作一个“日”字型框架ABCD,铁丝恰好全部用完.(1) 若所围成矩形框架ABCD的面积为144平方厘米,则AB的长为多少厘米?(2) 矩形框架ABCD面积最大值为______平方厘米.17.(2022·江苏无锡·中考真题)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).(1) 若矩形养殖场的总面积为36,求此时x的值;(2) 当x为多少时,矩形养殖场的总面积最大?最大值为多少?18.(2012·广西桂林·中考真题)如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.19.(2020·四川凉山·中考真题)如图,二次函数的图象过、、三点(1)求二次函数的解析式;(2)若线段OB的垂直平分线与y轴交于点C,与二次函数的图象在x轴上方的部分相交于点D,求直线CD的解析式;(3)在直线CD下方的二次函数的图象上有一动点P,过点P作轴,交直线CD于Q,当线段PQ的长最大时,求点P的坐标.20.(2022·内蒙古赤峰·中考真题)【生活情境】为美化校园环境,某学校根据地形情况,要对景观带中一个长,宽的长方形水池进行加长改造(如图①,改造后的水池仍为长方形,以下简称水池1),同时,再建造一个周长为的矩形水池(如图②,以下简称水池2).【建立模型】如果设水池的边加长长度为,加长后水池1的总面积为,则关于的函数解析式为:;设水池2的边的长为,面积为,则关于的函数解析式为:,上述两个函数在同一平面直角坐标系中的图像如图③.【问题解决】(1)若水池2的面积随长度的增加而减小,则长度的取值范围是_________(可省略单位),水池2面积的最大值是_________;(2)在图③字母标注的点中,表示两个水池面积相等的点是_________,此时的值是_________;(3)当水池1的面积大于水池2的面积时,的取值范围是_________;(4)在范围内,求两个水池面积差的最大值和此时的值;(5)假设水池的边的长度为,其他条件不变(这个加长改造后的新水池简称水池3),则水池3的总面积关于的函数解析式为:.若水池3与水池2的面积相等时,有唯一值,求的值.21.(2021·湖北黄石·中考真题)抛物线()与轴相交于点,且抛物线的对称轴为,为对称轴与轴的交点.(1)求抛物线的解析式;(2)在轴上方且平行于轴的直线与抛物线从左到右依次交于、两点,若是等腰直角三角形,求的面积;(3)若是对称轴上一定点,是抛物线上的动点,求的最小值(用含的代数式表示).22.(2021·四川雅安·中考真题)已知二次函数.(1)当该二次函数的图象经过点时,求该二次函数的表达式;(2)在(1) 的条件下,二次函数图象与x轴的另一个交点为点B,与y轴的交点为点C,点P从点A出发在线段AB上以每秒2个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒1个单位长度的速度向点C运动,直到其中一点到达终点时,两点停止运动,求△BPQ面积的最大值;(3)若对满足的任意实数x,都使得成立,求实数b的取值范围.23.(2022·广西·中考真题)已知抛物线与x轴交于A,B两点(点A在点B的左侧).(1)求点A,点B的坐标;(2)如图,过点A的直线与抛物线的另一个交点为C,点P为抛物线对称轴上的一点,连接,设点P的纵坐标为m,当时,求m的值;(3)将线段AB先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN,若抛物线与线段MN只有一个交点,请直接写出a的取值范围.参考答案C【分析】将图中三个坐标代入函数关系式解出a和b,再利用对称轴公式求出即可.解:将(3,0.8)(4,0.9)(5,0.6)代入得:②-①和③-②得⑤-④得,解得a=﹣0.2.将a=﹣0.2.代入④可得b=1.5.对称轴=.故选C.【点拨】本题考查二次函数的三点式,关键在于利用待定系数法求解,且本题只需求出a和b即可得出答案.A【分析】由题意及矩形的面积及周长公式可直接列出函数关系式,然后由函数关系式可直接进行排除选项.解:由题意得:,整理得:,,∴y与x成一次函数的关系,S与x成二次函数的关系;故选A.【点拨】本题主要考查一次函数与二次函数的应用,熟练掌握一次函数与二次函数的应用是解题的关键.C【分析】分别计算出三个方案的菜园面积进行比较即可.解:方案1,设米,则米,则菜园的面积当时,此时散架的最大面积为8平方米;方案2,当∠时,菜园最大面积平方米;方案3,半圆的半径此时菜园最大面积平方米>8平方米,故选:C【点拨】本题主要考查了同周长的几何图形的面积的问题,根据周长为8米计算三个方案的边长及半径是解本题的关键.B【分析】根据平移过程,可分三种情况,当时,当时,当时,利用直角三角形的性质及面积公式分别写出各种情况下y与x的函数关系式,再结合函数图象即可求解.解:过点C作CM⊥AB于N,,在等腰中,,,①当时,如图,,,,∴,y随x的增大而增大;②当时,如图,,∴当时,y是一个定值为1;③当时,如图,,,,当x=3,y=1,当3
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)