2024-2025学年辽宁省鞍山市九上数学开学质量跟踪监视试题【含答案】
展开
这是一份2024-2025学年辽宁省鞍山市九上数学开学质量跟踪监视试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)不等式的解是()
A.B.C.D.
2、(4分)在下列性质中,平行四边形不一定具有的是( )
A.对边相等B.对边平行C.对角互补D.内角和为360°
3、(4分)若关于的一元二次方程的一个根是1,则的值为( )
A.-2B.1C.2D.0
4、(4分)为了更好地迎接庐阳区排球比赛,某校积极准备,从全校学生中遴选出21名同学进行相应的排球训练,该训练队成员的身高如下表:
则该校排球队21名同学身高的众数和中位数分别是(单位:cm)( )
A.185,178B.178,175C.175,178D.175,175
5、(4分)点P(2,-3)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
6、(4分)用四张全等的直角三角形纸片拼成了如图所示的图形,该图形( )
A.既是轴对称图形也是中心对称图形
B.是轴对称图形但并不是中心对称图形
C.是中心对称图形但并不是轴对称图形
D.既不是轴对称图形也不是中心对称图形
7、(4分)下列命题中,真命题是( )
A.相等的角是直角
B.不相交的两条线段平行
C.两直线平行,同位角互补
D.经过两点有且只有一条直线
8、(4分)已知直线 y=-x+6交x轴于点A,交y轴于点B,点P在线段OA上,将△PAB沿BP翻折,点A的对应点A′恰好落在y轴上,则的值为( )
A.B.1C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是_______.
10、(4分)如图,▱ABCD的对角线AC、BD相交于点O,点E是CD的中点;若AD=8cm,则OE的长为_______.
11、(4分)如图,点B、C分别在直线y=2x和直线y=kx上,A、D是x轴上两点,若四边形ABCD为矩形,且AB:AD=1:2,则k的值是_____.
12、(4分)函数的图象位于第________象限.
13、(4分)如图,在中,点分别在上,且,,则___________
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形是平行四边形,是边上一点.
(1)只用无刻度直尺在边上作点,使得,保留作图痕迹,不写作法;
(2)在(1)的条件下,若,,求四边形的周长.
15、(8分)如图,正方形ABCD中,O是对角线的交点,AF平分BAC,DHAF于点H,交AC于G,DH延长线交AB于点E,求证:BE=2OG.
16、(8分)计算与化简:
(1)化简
(2)化简,
(3)计算
(4)计算
17、(10分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.
求证:(1)△ABE≌△CDF;
(2)四边形BFDE是平行四边形.
18、(10分)已知:y=y1﹣y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=﹣1时y=1.
(1)求y关于x的函数关系式.
(2)求x=﹣时,y的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)写出一个比2大比3小的无理数(用含根号的式子表示)_____.
20、(4分)如图,将正方形ABCD沿BE对折,使点A落在对角线BD上的A′处,连接A′C,则∠BA′C=________度.
21、(4分)若正多边形的一个外角等于36°,那么这个正多边形的边数是________.
22、(4分)如图,一根垂直于地面的木杆在离地面高3m处折断,若木杆折断前的高度为8m,则木杆顶端落在地面的位置离木杆底端的距离为________m.
23、(4分)已知:AB=2m,CD=28cm,则AB:CD=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知,如图,在平面直角坐标系中,直线分别交轴、轴于点、两点,直线过原点且与直线相交于,点为轴上一动点.
(1)求点的坐标;
(2)求出的面积;
(3)当的值最小时,求此时点的坐标;
25、(10分)某零件制造车间有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件,可获利润150元,每制造一个乙种零件可获利润260元,在这20名工人中,车间每天安排名工人制造甲种零件,其余工人制造乙种零件,且生产乙种零件的个数不超过甲种零件个数的一半.
(1)请写出此车间每天所获利润(元)与(人)之间的函数关系式;
(2)求自变量的取值范围;
(3)怎样安排生产每天获得的利润最大,最大利润是多少?
26、(12分)观摩、学习是我们生活的一部分,而在观摩中与展览品保持一定的距离是一种文明的表现.某学校数学业余学习小组在平面直角坐标系xOy有关研讨中,将到线段PQ所在的直线距离为的直线,称为直线PQ的“观察线”,并称观察线上到P、Q两点距离和最小的点L为线段PQ的“最佳观察点”.
(1)如果P(1,),Q(4,),那么在点A(1,0),B(,2),C(,3)中,处在直线PQ的“观察线”上的是点 ;
(2)求直线y=x的“观察线”的表达式;
(3)若M(0,﹣1),N在第二象限,且MN=6,当MN的一个“最佳观察点”在y轴正半轴上时,直接写出点N的坐标;并按逆时针方向联结M、N及其所有“最佳观察点”,直接写出联结所围成的多边形的周长和面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
解出两个不等式的解集,再取它们的公共部分作为不等式组的解集即可
【详解】
解:
解不等式①得:
解不等式②得:
∴该不等式的解集是
故答案为:C
本题考查了一元一次不等式组的解法,掌握其解法是解题的关键.
2、C
【解析】
A、平行四边形的对边相等,故本选项正确;
B、平行四边形的对边平行,故本选项正确;
C、平行四边形的对角相等不一定互补,故本选项错误;
D、平行四边形的内角和为360°,故本选项正确;故选C
3、C
【解析】
根据方程的解的定义,把x=1代入方程,即可得到关于a的方程,再求解即可.
【详解】
解:根据题意得:1-3+a=0
解得:a=1.
故选C.
本题主要考查了一元二次方程的解的定义,特别需要注意的条件是二次项系数不等于0.
4、D
【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.
【详解】
解:因为175出现的次数最多,
所以众数是:175cm;
因为第十一个数是175,
所以中位数是:175cm.
故选:D.
本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
5、D
【解析】
根据各象限内点的坐标特征解答.
【详解】
解:点P(2,-3)在第四象限.
故选:D.
本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
6、C
【解析】
根据轴对称图形和中心对称图形的概念进行判断即可。
【详解】
解:根据轴对称图形与中心对称图形概念,看图分析得:它是中心对称图形,但不是轴对称图形.
故选C.
本题考查了轴对称图形和中心对称图形的概念:把一个图形沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴;一个图形绕着某个点旋转180°,能够和原来的图形重合,则为中心对称图形.
7、D
【解析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【详解】
解: A,不正确,因为相等的角也可能是锐角或钝角;
B,不正确,因为前提是在同一平面内;
C,不正确,因为两直线平行,同位角相等;
D,正确,因为两点确定一条直线.
故选D.
本题考查命题与定理.
8、C
【解析】
设:PA=a=PA′,则OP=6-a,OA′=-6,由勾股定理得:PA′2=OP2+OA′2,即可求解.
【详解】
解:如图,y=-x+6,令x=0,则y=6,令y=0,则x=6,
故点A、B的坐标分别为(6,0)、(0,6),则AB==A′B,
设:PA=a=PA′,则OP=6-a,OA′=-6,
由勾股定理得:PA′2= OA′2+OP2,
即(a)2=(-6)2+(6-a)2,
解得:a=12-,
则PA=12-,OP=−6,
则.
故选:C.
本题考查的是一次函数图象上点的坐标特征,关键在于在画图的基础上,利用勾股定理:PA′2= OA′2+OP2,从而求出PA、OP线段的长度,进而求解.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
设MN=y,PC=x,根据正方形的性质和勾股定理列出y1关于x的二次函数关系式,求二次函数的最值即可.
【详解】
作MG⊥DC于G,如图所示:
设MN=y,PC=x,
根据题意得:GN=2,MG=|10-1x|,
在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,
即y1=21+(10-1x)1.
∵0<x<10,
∴当10-1x=0,即x=2时,y1最小值=12,
∴y最小值=2.即MN的最小值为2;
故答案为:2.
本题考查了正方形的性质、勾股定理、二次函数的最值.熟练掌握勾股定理和二次函数的最值是解决问题的关键.
10、4cm
【解析】
先说明OE是△ACD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解.
【详解】
∵▱ABCD的对角线AC、BD相交于点O,
∴OA=OC,
∵点E是CD的中点,
∴CE=DE,
∴OE是△ACD的中位线,
∵AD=8cm,
∴OE=AD=×8=4cm,
故答案为:4cm.
本题考查了平行四边形的性质,三角形中位线定理,熟练掌握相关的性质定理是解题的关键.
11、
【解析】
根据矩形的性质可设点A的坐标为(a,0),再根据点B、C分别在直线y=2x和直线y=kx上,可得点B、C、D的坐标,再由AB:AD=1:2,求得k的值即可.
【详解】
解:∵四边形ABCD为矩形,
∴设点A的坐标为(a,0)(a>0),则点B的坐标为(a,2a),点C的坐标为(a,2a),点D的坐标为(a,0),
∴AB=2a,AD=(﹣1)a.
∵AB:AD=1:2,
∴﹣1=2×2,
∴k=.
故答案为:.
一次函数在几何图形中的实际应用是本题的考点,熟练掌握矩形的性质是解题的关键.
12、二、四
【解析】
根据反比例函数的性质:y=,k>0时,图象位于一三象限,k<0时,图象位于二、四象限,可得答案.
【详解】
解:反比例函数y=-的k=-6<0,
∴反比例函数y=-的图象位于第二、四象限,
故答案为二、四.
本题考查反比例函数的性质,解题关键是利用y=,k>0时,图象位于一三象限,k<0时,图象位于二、四象限判断.
13、
【解析】
根据相似三角形的判定定理得到△ADE∽△ABC,根据相似三角形的性质计算即可.
【详解】
∵DE∥BC,
∴△ADE∽△ABC,
∴,
∴ ,
故答案为:.
此题考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)见解析;(2)1.
【解析】
(1)如图,连接,交于点,作直线交于点,点即为所求;
(2)求出,即可解决问题.
【详解】
(1)如图,点即为所求;
(2),,
,
,
,
,
四边形是平行四边形,
,,
平行四边形的周长为1.
本题考查作图——复杂作图,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题.
15、证明见解析.
【解析】
分析:作OM∥AB交DE于M.首先证明OM是△DEB的中位线,再根据等角对等边证明OG=OM即可解决问题.
详解:作OM∥AB交DE于M.
∵四边形ABCD是正方形,
∴OB=OD,
∵OM∥BE,
∴EM=DM,
∴BE=2OM,
∵∠OAD=∠ADO=∠BAC=45°,
∵AF平分∠BAC,
∴∠EAH=22.5°,
∵AF⊥DE,
∴∠AHE=∠AHD=90°,
∴∠AEH=67.5°,
∵∠ADE+∠AED=90°,
∴∠ADE=22.5°,
∴∠OGD=∠GAD+∠ADE=67.5°,
∵∠AEH=∠OME=67.5°,
∴∠OGM=∠OMG,
∴OG=OM,
∴BE=2OG.
点睛:本题考查了正方形的性质,平行线的性质,等腰三角形的判定,三角形的中位线等知识点,正确作出辅助线,证明OG=OM是解答本题的关键.
16、(1)(2)(3)(4)
【解析】
(1)原式变形后,利用同分母分式的减法法则计算即可得到结果.
(2)首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算,代自己喜欢的值时注意不能使分母为1.
(3)先把各根式化为最简二次根式,再合并同类项即可
(4)二次根式的性质去括号,再合并同类二次根式。
【详解】
(1).原式
(2)原式
(3)原式
(4)原式
此题考查分式的混合运算, 掌握运算法则是解题关键
17、(1)见解析;(2)见解析;
【解析】
(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.
(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.
【详解】
证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,
在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,
∴△ABE≌△CDF(SAS).
(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.
∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.
∴四边形BFDE是平行四边形.
18、 (1)y=2x2+;(2)y=﹣.
【解析】
(1)设y1=k1x2,y2=,根据y=y1﹣y2,列出y与k1,k2和x之间的函数关系,再将x,y的已知量代入,便能求出k1,k2的值,进而得到y关于x的函数关系式.
(2)把x=-代入y关于x的函数关系式即可.
【详解】
解:(1)设y1=k1x2,y2=,
∵y=y1﹣y2,
∴y=k1 x2﹣,
把x=1,y=3代入y=k1 x2﹣得:k1﹣k2=3①,
把x=﹣1,y=1代入y=k1 x2﹣得:k1 + k2=1②,
①,②联立,解得:k1=2,k2=﹣1,
即y关于x的函数关系式为y=2x2+,
(2)把x=﹣代入y=2x2+,
解得y=﹣.
本道题主要考查了学生对待定系数法求正比例函数解析式、反比例函数解析式的熟练掌握情况,能够正确的表示出y、x的函数关系式,进而用待定系数法求得其解析式是解答此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
【分析】先利用4<5<9,再根据算术平方根的定义有2<<3,这样就可得到满足条件的无理数.
【详解】∵4<5<9,
∴2<<3,
即为比2大比3小的无理数.
故答案为:.
【点睛】本题考查了估算无理数的大小,熟练掌握利用完全平方数和算术平方根对无理数的大小进行估算是解题的关键.
20、67.1.
【解析】
由四边形ABCD是正方形,可得AB=BC,∠CBD=41°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.
【详解】
解:因为四边形ABCD是正方形,
所以AB=BC,∠CBD=41°,
根据折叠的性质可得:A′B=AB,
所以A′B=BC,
所以∠BA′C=∠BCA′==67.1°.
故答案为:67.1.
此题考查了折叠的性质与正方形的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.
21、十
【解析】
根据正多边形的外角和为360°,除以每个外角的度数即可知.
【详解】
解:∵正多边形的外角和为360°,
∴正多边形的边数为,
故答案为:十.
本题考查了正多边形的外角与边数的关系,解题的关键是熟知正多边形外角和等于每个外角的度数与边数的乘积.
22、4
【解析】
由题意得,在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出木杆顶端落在地面的位置离木杆底端的距离.
【详解】
一颗垂直于地面的木杆在离地面处折断,木杆折断前的高度为,
木杆顶端落在地面的位置离木杆底端的距离为.
故答案为:.
此题考查了勾股定理的应用,主要考查学生对勾股定理在实际生活中的运用能力.
23、50:7
【解析】
先将2m转换为200cm,再代入计算即可.
【详解】
∵AB=2m=200cm,CD=28cm,
∴AB:CD=200:28=50:7.
故答案为50:7.
本题考查比例线段,学生们掌握此定理即可.
二、解答题(本大题共3个小题,共30分)
24、 (1)点;(2);(3)点.
【解析】
(1)联立两直线解析式组成方程组,解得即可得出结论;
(2)将代入,求出OB的长,再利用 (1)中的结论点,即可求出的面积;
(3)先确定出点A关于y轴的对称点A',即可求出PA+PC的最小值,再用待定系数法求出直线A'C的解析式即可得出点P坐标.
【详解】
解:(1)∵直线l1:y=x+3与直线l2:y=-3x相交于C,
∴
解得:
∴点;
(2) ∵把代入,
解得:,
∴,
又∵点,
∴
;
(3) 如图,作点A(-3,0)关于y轴的对称点A'(3,0),
连接CA'交y轴于点P,此时,PC+PA最小,
最小值为CA'=,
由(1)知,,
∵A'(3,0),
∴直线A'C的解析式为,
∴点.
此题是一次函数综合题,主要考查了函数图象的交点坐标的求法,极值的确定,用分类讨论的思想和方程(组)解决问题是解本题的关键.
25、(1);(2)(3)安排13人生产甲种零件,安排7人生产乙种零件,所获利润最大,最大利润为20800元.
【解析】
(1)整个车间所获利润=甲种零件所获总利润+乙种零件所获总利润;
(2)根据零件零件个数均为非负整数以及乙种零件的个数不超过甲种零件个数的一半可得自变量的取值范围;
(3)根据(1)得到的函数关系式可得当x取最小整数值时所获利润最大.
解答
【详解】
解:(1)此车间每天所获利润(元)与(人)之间的函数关系式是
.
(2)由
解得
因为为整数,所以
(3)随的增大而减小,
当时,.
即安排13人生产甲种零件,安排7人生产乙种零件,所获利润最大,最大利润为20800元.
本题考查一次函数的性质、一元一次不等式组的应用和一次函数的应用,解题的关键是熟练掌握一次函数的性质、一元一次不等式组的应用和一次函数的应用.
26、 (1)A,B; (1)直线y=x的“观察线”的解析式为y=x﹣1或y=x+1;(3)围成的图形是菱形MQNQ′,这个菱形的周长8,这个菱形的面积6.
【解析】
(1)由题意线段PQ的“观察线”的解析式为y=0或y=1,由此即可判断;
(1)如图1中,设直线的下方的“观察线”MN交y轴于K,作KE⊥直线,求出直线MN的解析式,再根据对称性求出直线的上方的“观察线”PQ即可;
(3)如图3中,设点Q是MN的一个“最佳观察点”,点P是MN的中点.解直角三角形求出点P坐标,再根据中点坐标公式求出等N坐标;观察图象可知:设此时的另一个“最佳观察点”为Q′,按逆时针方向联结M、N及其所有“最佳观察点”,所围成的图形是菱形MQNQ′,这个菱形的周长=8,这个菱形的面积==×6×1=6.
【详解】
(1)如图1中,
由题意线段PQ的“观察线”的解析式为y=0或y=1,
∵点A在直线y=0上,点B在直线y=1上,
∴点A,点B是直线PQ的“观察线”上的点,
故答案为A,B.
(1)如图1中,设直线y=x的下方的“观察线”MN交y轴于K,作KE⊥直线y=x,
由题意:EK=,
∵直线y=x与x轴的夹角为30°,
∴∠EOK=60°,
∴∠EKO=30°,
∴tan30°==,
∴OE=1,
∴OK=1OE=1,
∵MN∥直线y=x,
∴直线MN的解析式为y=x﹣1,
根据对称性可知在直线y=x上方的“观察线”PQ的解析式为y=x+1.
综上所述,直线y=x的“观察线”的解析式为y=x﹣1或y=x+1.
(3)如图3中,设点Q是MN的一个“最佳观察点”,点P是MN的中点.
当点Q在y轴的正半轴上时,连接PQ,则PQ垂直平分线线段MN.
在Rt△PQM中,PQ=,PM=3,
∴MQ==1,
∵M(0,﹣1),
OQ=1﹣1,
作PH⊥y轴于H.
在Rt△PQH中,∵tan∠PQH==,
∴∠PQH=60°,
∴∠QPH=30°,
∴QH=PQ=,PH=QH=,
∴OH=1﹣1﹣=﹣1,
∴P(﹣,﹣1),
∵PN=PM,
∴N(﹣3,3﹣1).
观察图象可知:设此时的另一个“最佳观察点”为Q′,按逆时针方向联结M、N及其所有“最佳观察点”,所围成的图形是菱形MQNQ′,这个菱形的周=8,这个菱形的面积=×6×1=6.
本题考查一次函数综合题、点到直线的距离、轨迹、解直角三角形等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题.
题号
一
二
三
四
五
总分
得分
批阅人
身高(cm)
170
172
175
178
180
182
185
人数(个)
2
4
5
2
4
3
1
相关试卷
这是一份2024-2025学年江西省上饶市名校数学九上开学质量跟踪监视试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖南省永州市宁远县九上数学开学质量跟踪监视试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖南省怀化市九上数学开学质量跟踪监视模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。