年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024年辽宁省沈阳市南昌中学九上数学开学质量跟踪监视模拟试题【含答案】

    2024年辽宁省沈阳市南昌中学九上数学开学质量跟踪监视模拟试题【含答案】第1页
    2024年辽宁省沈阳市南昌中学九上数学开学质量跟踪监视模拟试题【含答案】第2页
    2024年辽宁省沈阳市南昌中学九上数学开学质量跟踪监视模拟试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年辽宁省沈阳市南昌中学九上数学开学质量跟踪监视模拟试题【含答案】

    展开

    这是一份2024年辽宁省沈阳市南昌中学九上数学开学质量跟踪监视模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)关于x的分式方程有增根,则a的值为( )
    A.2B.3C.4D.5
    2、(4分)如图所示,已知A(,y1),B(2,y2)为反比例函数图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是( )
    A.(,0)B.(1,0)C.(,0)D.(,0)
    3、(4分)如图,矩形纸片中,,将沿折叠,使点落在点处,交于点,则的长等于( )
    A.B.C.D.
    4、(4分)一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成( )
    A.10组B.9组C.8组D.7组
    5、(4分)图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图②所示的“数学风车”,则这个风车的外围周长是( )
    A.51B.49C.76D.无法确定
    6、(4分)如图,ABCD是一张平行四边形纸片,要求利用所学知识作出一个菱形,甲、乙两位同学的作法如下:
    则关于甲、乙两人的作法,下列判断正确的为( )
    A.仅甲正确B.仅乙正确C.甲、乙均正确D.甲、乙均错误
    7、(4分)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数( )
    A.8人B.9人C.10人D.11人
    8、(4分)如图,第一个正方形的顶点A1(﹣1,1),B1(1,1);第二个正方形的顶点A2(﹣3,3),B2(3,3);第三个正方形的顶点A3(﹣6,6),B3(6,6)按顺序取点A1,B2,A3,B4,A5,B6…,则第12个点应取点B12,其坐标为( )
    A.(12,12)B.(78,78)C.(66,66)D.(55,55)
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)要使有意义,则x的取值范围是_________.
    10、(4分)以正方形ABCD一边AB为边作等边三角形ABE,则∠CED=_____.
    11、(4分)已知一组数据为1,10,6,4,7,4,则这组数据的中位数为________________.
    12、(4分)某种型号的空调经过两次降价,价格比原来下降了36%,则平均每次下降的百分数是_____%.
    13、(4分)某市规定了每月用水不超过l8立方米和超过18立方米两种不同的收费标准,该市用户每月应交水费y(元)是用水x(立方米)的函数,其图象如图所示.已知小丽家3月份交了水费102元,则小丽家这个月用水量为_____立方米.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在△ABC中,∠CAB的平分线AD与BC垂直平分线DE交于点D,DM⊥AB于点M,DN⊥AC,交AC的延长线于点N,求证:BM=CN.
    15、(8分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,
    (1)求证:AF=DC;
    (2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
    16、(8分)先化简,再求值:,其中,a=+1.
    17、(10分)如图,矩形中,点在边上,将沿折叠,点落在边上的点处,过点作交于点,连接.
    (1)求证:四边形是菱形;
    (2)若,求四边形的面积.
    18、(10分)如图,AD是△ABC的高,CE是△ABC的中线.
    (1)若AD=12,BD=16,求DE;
    (2)已知点F是中线CE的中点,连接DF,若∠AEC=57°,∠DFE=90°,求∠BCE的度数.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)阅读下面材料:
    在数学课上,老师提出如下问题:
    已知:如图,及边的中点.
    求作:平行四边形.
    ①连接并延长,在延长线上截取;
    ②连接、.
    所以四边形就是所求作的平行四边形.
    老师说:“小敏的作法正确.
    请回答:小敏的作法正确的理由是__________.
    20、(4分)使分式的值为0,这时x=_____.
    21、(4分)如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2; …;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=_____.
    22、(4分)反比例函数y=(k>0)在第一象限内的图象如图,点M是图象上一点,MP垂直x轴于点P,如果△MOP的面积为1,那么k的值是________.
    23、(4分)如图,在平行四边形ABCD中,对角线AC⊥BD,AC=10,BD=24 ,则AD=____________
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在正方形ABCD中,E是CD边的中点,AC与BE相交于点F,连接DF.
    (1)在不增加点和线的前提下,直接写出图中所有的全等三角形;
    (2)连接AE,试判断AE与DF的位置关系,并证明你的结论;
    (3)延长DF交BC于点M,试判断BM与MC的数量关系.(直接写出结论)
    25、(10分)已知一次函数y=kx+b的图象经过点A(−1,−1)和点B(1,−3).求:
    (1)求一次函数的表达式;
    (2)求直线AB与坐标轴围成的三角形的面积;
    (3)请在x轴上找到一点P,使得PA+PB最小,并求出P的坐标.
    26、(12分)如图,在平面直角坐标系中,A(0,8),B(﹣4,0),线段AB的垂直平分线CD分别交AB、OA于点C、D,其中点D的坐标为(0,3).
    (1)求直线AB的解析式;
    (2)求线段CD的长;
    (3)点E为y轴上一个动点,当△CDE为等腰三角形时,求E点的坐标.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出a的值.
    【详解】
    解:去分母得:x+1=a,
    由分式方程有增根,得到x-4=0,即x=4,
    代入整式方程得:a=5,
    故选:D.
    此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
    2、D
    【解析】
    求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.
    【详解】
    ∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,
    ∴A(,2),B(2,),
    ∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,
    ∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,
    即此时线段AP与线段BP之差达到最大,
    设直线AB的解析式是y=kx+b,
    把A、B的坐标代入得:

    解得:k=-1,b=,
    ∴直线AB的解析式是y=-x+,
    当y=0时,x=,
    即P(,0),
    故选D.
    本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.
    3、B
    【解析】
    根据矩形的性质可得AD∥BC,再由平行线及折叠的性质可得∠DAC=∠ACF,得到AF=CF,在Rt△CDF中,运用勾股定理列出方程即可解答.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴AD∥BC,∠D=90°,AD=BC=6,DC=AB=4,
    ∴∠DAC=∠ACB
    又∵△AEC是由△ABC折叠而得,
    ∴∠ACF=∠ACB
    ∴∠DAC=∠ACF
    ∴AF=CF
    设DF=x,则CF=AF=6-x,
    ∴在Rt△CDF中,,即
    解得:,

    故答案为:B.
    本题考查了矩形中的折叠问题,涉及矩形的性质,等腰三角形的判定以及折叠的性质,勾股定理的运用,解题的关键是根据矩形及折叠的性质得到AF=CF.
    4、A
    【解析】
    在这组数据中最大值为143,最小值为50,它们的差为143-50=93,已知组距为10,可知93÷10=9.3,故可以分成10组.
    故选A.
    此题主要考查了频数直方图的组距,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.
    5、C
    【解析】
    试题解析:依题意得,设“数学风车”中的四个直角三角形的斜边长为x,则
    x2=122+52=169,
    解得x=1.
    故“数学风车”的周长是:(1+6)×4=2.
    故选C.
    6、C
    【解析】
    试题解析:根据甲的作法作出图形,如下图所示.
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,

    ∵EF是AC的垂直平分线,

    在和中,

    ∴≌,

    又∵AE∥CF,
    ∴四边形AECF是平行四边形.

    ∴四边形AECF是菱形.
    故甲的作法正确.
    根据乙的作法作出图形,如下图所示.
    ∵AD∥BC,
    ∴∠1=∠2,∠6=∠7.
    ∵BF平分,AE平分
    ∴∠2=∠3,∠5=∠6,
    ∴∠1=∠3,∠5=∠7,


    ∵AF∥BE,且
    ∴四边形ABEF是平行四边形.

    ∴平行四边形ABEF是菱形.
    故乙的作法正确.
    故选C.
    点睛:菱形的判定方法:有一组邻边相等的平行四边形是菱形.
    对角线互相垂直的平行四边形是菱形.
    四条边相等的平行四边形是菱形.
    7、B
    【解析】
    试题分析:设每轮传染中平均一个人传染的人数为x人,第一轮过后有(1+x)个人感染,第二轮过后有(1+x)+x(1+x)个人感染,那么由题意可知1+x+x(1+x)=100,整理得,,解得x=9或-11, x=-11不符合题意,舍去.那么每轮传染中平均一个人传染的人数为9人.故选B.
    考点:一元二次方程的应用.
    8、B
    【解析】
    根据选点的规律,罗列出部分点的坐标,根据这些点的坐标找出规律“An(-, ),Bn(,)(n为正整数)”,再根据该规律解决问题.
    【详解】
    解:观察,发现规律:A1(-1,1),B1(1,1),A2(-3,3),B2(3,3),A3(-6,6),B3(6,6),B4(10,10),A5(-15,15),…,∴An(-, ),Bn(,)(n为正整数).∴B12(,),即(78,78).
    故选B
    本题考查了规律型中的点的坐标,解题的关键是找出规律“An(-, ),Bn(,)(n为正整数)”.本题属于中档题,难度不大,解决该题型题目时,根据选点的规律列出部分点的坐标,根据这些点的坐标发现规律是关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、.
    【解析】
    根据二次根式有意义的条件即可解答.
    【详解】
    ∵有意义,
    ∴2x+5≥0,
    解得,.
    故答案为:.
    本题考查了二次根式有意义的条件,熟知二次根式有意义被开方数为非负数是解决问题的关键.
    10、30°或150°.
    【解析】
    等边△ABE的顶点E可能在正方形外部,也可能在正方形内部,因此分两种情况画出图形进行求解即可.
    【详解】
    分两种情况:
    ①当点E在正方形ABCD外侧时,如图1所示:
    ∵四边形ABCD是正方形,△ABE是等边三角形
    ∴∠ABC=90°,BC=BE=AB,∠ABE=∠AEB=60°,
    ∴∠CBE=∠CBA+∠ABE=90°+60°=150°,
    ∵BC=BE,
    ∴∠BCE═∠BEC=15°,
    同理可得∠EDA═∠DEA=15°,
    ∴∠CED=∠AEB﹣∠CEB﹣∠DEA=60°﹣15°﹣15°=30°;
    ②当点E在正方形ABCD内侧时,如图2所示:
    ∵∠EAB=∠AEB=60°,∠BAC=90°,
    ∴∠CAE=30°,
    ∵AC=AE,
    ∴∠ACE=∠AEC=75°,
    同理∠DEB=∠EDB=75°,
    ∴∠CED=360°﹣60°﹣75°﹣75°=150°;
    综上所述:∠CED为30°或150°;
    故答案为:30°或150°.
    本题考查了正方形的性质及等边三角形的性质,正确地进行分类,熟练掌握相关的性质是解题的关键.
    11、5.
    【解析】
    将一组数据按照从小到大的顺序进行排列,排在中间位置上的数叫作这组数据的中位数,若这组数据的个数为偶数个,那么中间两位数的平均数就是这组数据的中位数,据此解答即可得到答案.
    【详解】
    解:将这组数据按从小到大的顺序排列是:1,4,4,6,7,10,位于最中是的两个数是4和6,因此中位数为(4+6)÷2=5.
    故答案为5.
    本题考查了中位数的含义及计算方法.
    12、20%.
    【解析】
    增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可参照增长率问题求解.设平均每次下降的百分数是x,则根据题意可列方程(1-x)2=1-36%,解方程即可求解.注意根据实际意义进行值的取舍.
    【详解】
    设平均每次下降的百分数是x,根据题意得(1-x)2=1-36%
    解方程得x1=0.2=20%,x2=1.8(舍去)
    所以平均每次下降的百分数是20%.
    故答案是:20%.
    考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“-”).
    13、1
    【解析】
    根据题意和函数图象中的数据可以求得当x>18时对应的函数解析式,根据102>54可知,小丽家用水量超过18立方米,从而可以解答本题.
    【详解】
    解:设当x>18时的函数解析式为y=kx+b,
    图象过(18,54),(28,94)
    ∴,得
    即当x>18时的函数解析式为:y=4x-18,
    ∵102>54,
    ∴小丽家用水量超过18立方米,
    ∴当y=102时,102=4x-18,得x=1,
    故答案为:1.
    本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
    三、解答题(本大题共5个小题,共48分)
    14、见解析
    【解析】
    根据角平分线的性质和线段垂直平分线的性质可得到DM=DN,DB=DC,根据HL证明△DMB≌△DNC,即可得出BM=CN.
    【详解】
    证明:连接BD,
    ∵AD是∠CAB的平分线,DM⊥AB,DN⊥AC,
    ∴DM=DN,
    ∵DE垂直平分线BC,
    ∴DB=DC,
    在Rt△DMB和Rt△DNC中,

    ∴Rt△DMB≌Rt△DNC(HL),
    ∴BM=CN.
    本题主要考查了角平分线的性质和线段垂直平分线的性质以及全等三角形的判定与性质,熟悉角平分线的性质和线段垂直平分线的性质是解决问题的关键.
    15、(1)见解析(2)见解析
    【解析】
    (1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.
    (2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.
    【详解】
    解:(1)证明:∵AF∥BC,
    ∴∠AFE=∠DBE.
    ∵E是AD的中点,AD是BC边上的中线,
    ∴AE=DE,BD=CD.
    在△AFE和△DBE中,
    ∵∠AFE=∠DBE,∠FEA=∠BED, AE=DE,
    ∴△AFE≌△DBE(AAS)
    ∴AF=BD.
    ∴AF=DC.
    (2)四边形ADCF是菱形,证明如下:
    ∵AF∥BC,AF=DC,
    ∴四边形ADCF是平行四边形.
    ∵AC⊥AB,AD是斜边BC的中线,
    ∴AD=DC.
    ∴平行四边形ADCF是菱形
    16、原式= ,当a=+1时,原式=.
    【解析】
    试题分析:先因式分解,再根据分式的基本性质约分,然后算加,最后代入求值即可.
    解:原式
    当时,原式.
    考点:分式的化简求值
    点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.
    17、(1)详见解析;(2)
    【解析】
    (1)根据题意可得,因此可得,又,则可得四边形是平行四边形,再根据可得四边形是菱形.
    (2)设,则,再根据勾股定理可得x的值,进而计算出四边形的面积.
    【详解】
    (1)证明:由题意可得,

    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴四边形是平行四边形,
    又∵
    ∴四边形是菱形;
    (2)∵矩形中, ,
    ∴,
    ∴,
    ∴,
    设,则,
    ∵,
    ∴,
    解得, ,
    ∴,
    ∴四边形的面积是:.
    本题主要考查菱形的判定,关键在于首先证明其是平行四边形,再证明两条临边相等即可.
    18、(1)DE=10;(2)∠BCE=19°.
    【解析】
    (1)根据勾股定理和直角三角形斜边上的中线等于斜边的一半即可得到结论;
    (2)由DE=DC得到∠DEC=∠DCE,由DE=BE得到∠B=∠EDB,由此根据外角的性质来求∠BCE的度数.
    【详解】
    (1)∵AD⊥BC,
    ∴∠ADB=90°,
    ∴AB==20,
    ∵CE是中线,
    ∴DE是斜边AB上的中线,
    ∴DE=AB=10;
    (2)∵DF⊥CF,F是CF的中点,
    ∴DE=DC,
    ∴∠DEC=∠DCE,
    ∴∠EDB=∠DEC+∠DCE=2∠BCE,
    ∵DE=BE,
    ∴∠B=∠EDB,
    ∴∠B=2∠BCE,
    ∴∠AEC=3∠BCE=57°,则∠BCE=19°.
    本题考查了勾股定理,也考查了直角三角形斜边上的中线性质,熟练掌握勾股定理是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、对角线互相平分的四边形是平行四边形
    【解析】试题解析:∵是边的中点,
    ∴,
    ∵,
    ∴四边形是平行四边形,
    则依据:对角线互相平分的四边形是平行四边形.
    故答案为:对角线互相平分的四边形是平行四边形.
    20、1
    【解析】
    试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.
    答案为1.
    考点:分式方程的解法
    21、
    【解析】
    利用角平分线的数量关系和外角的性质先得到∠A1与∠A的关系,同样的方法再得到∠A2和∠A1的关系,从而观察出其中的规律,得出结论.
    【详解】
    平分 ,

    平分 ,



    同理可得:

    ......
    本题考察了三角形内角和外角平分线的综合应用及列代数式表示规律.
    22、1
    【解析】
    过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.
    【详解】
    解:由题意得:S△MOP=|k|=1,k=±1,
    又因为函数图象在一象限,所以k=1.
    故答案为:1.
    主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.
    23、13
    【解析】
    根据平行四边形对角线互相平分先求出AO、OD的长,再根据AC⊥BD,在Rt△AOD中利用勾股定理进行求解即可.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴OA=AC=×10=5,OD=BD=×24=12,
    又∵AC⊥BD,∴∠AOD=90°,
    ∴AD==13,
    故答案为:13.
    本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)△ADF≌△ABF,△ADC≌△ABC,△CDF≌△CBF;(1)AE⊥DF,详见解析;(3)详见解析
    【解析】
    (1)根据正方形的性质得到相关的条件找出全等的三角形:△ADF≌△ABF,△ADC≌△ABC,△CDF≌△CBF;
    (1)利用正方形的性质证明△ADE≌△BCE,再利用全等的关系求出∠AHD=90°,得到AE⊥DF;
    (3)利用(1)中结论,及正方形的性质证明△DCM≌△BCE,得到CE=CM,结合点E为DC的中点即可证明点M为BC的中点.
    【详解】
    解:(1)∵四边形ABCD是正方形,
    ∴AB=AD=BC=DC,∠DAC=∠BAC=∠DCA=∠BCA=23°,
    又∵AF=AF,
    ∴△ADF≌△ABF,
    ∵AC=AC,
    ∴△ADC≌△ABC,
    ∵CF=CF,
    ∴△CDF≌△CBF,
    ∴全等的三角形有:△ADF≌△ABF,△ADC≌△ABC,△CDF≌△CBF.
    (1)AE⊥DF.
    证明:设AE与DF相交于点H.
    ∵四边形ABCD是正方形,
    ∴AD=AB,∠DAF=∠BAF.
    又∵AF=AF,
    ∴△ADF≌△ABF.
    ∴∠1=∠1.
    又∵AD=BC,∠ADE=∠BCE=90°,DE=CE,
    ∴△ADE≌△BCE.
    ∴∠3=∠2.
    ∵∠1+∠2=90°,
    ∴∠1+∠3=90°,
    ∴∠AHD=90°.
    ∴AE⊥DF.
    (3)如图,∵∠ADE=90°,AE⊥DF.
    ∴∠1+∠3=90°,∠3+∠1=90°.
    ∴∠3=∠3,
    ∵∠3=∠2,
    ∴∠2=∠3.
    ∵DC=BC,∠DCM=∠BCE=90°,
    ∴△DCM≌△BCE.
    ∴CE=CM,
    又∵E为CD中点,且CD=CB,
    ∴CE=CD=BC,
    ∴CM=CB,即M为BC中点,
    ∴BM=MC.
    主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.
    25、(1)y=-x-2;(2)2;(3)P(-)
    【解析】
    【分析】(1)把A、B两点代入可求得k、b的值,可得到一次函数的表达式;
    (2)分别令y=0、x=0可求得直线与两坐标轴的两交点坐标,可求得所围成的三角形的面积;
    (3)根据轴对称的性质,找到点A关于x的对称点A′,连接BA′,则BA′与x轴的交点即为点P的位置,求出直线BA′的解析式,可得出点P的坐标.
    【详解】(1)把A(-1,-1)B(1,-3)分别代入y=kx+b,得:
    ,解得:,
    ∴一次函数表达式为:y=-x-2;
    (2)设直线与x轴交于C,与y轴交于D,y=0代入y=-x-2得x=-2,∴OC=2,
    x=0代入y=-x-2 得:y=-2,∴OD=2,
    ∴S △COD =×OC×OD=×2×2=2;
    (3)点A关于x的对称点A′,连接BA′交x轴于P,则P即为所求,
    由对称知:A′(-1,1),设直线A′B解析式为y=ax+c,
    则有,解得:,
    ∴y=-2x-1,
    令y=0得, -2x-1=0, 得x=- ,∴P(-).
    【点睛】本题考查了待定系数法求函数解析式,一次函数图象上点的坐标特征,轴对称-最短路线问题,熟练掌握待定系数法的应用是解题的关键.
    26、(1)直线AB的解析式为y=2x+8;(2)CD=;(3)满足题意的点E坐标为(0,5+)或(0,5﹣)或(0,5)或(0,).
    【解析】
    (1)用待定系数法求解即可;
    (2)先由勾股定理求出AB的长,再由垂直平分线的性质求出AC的长,然后证明△CAD∽△OAB,利用相似三角形的对应边成比例即可求出CD的长,
    (3)先由△CAD∽△OAB,求出AD和OD的长,然后分当CD=DE时,当CD=CE时,当CE=DE时三种情况求解即可;
    【详解】
    (1)∵A(0,8),
    ∴设直线AB的解析式为y=kx+8,
    ∵B(﹣4,0),
    ∴﹣4k+8=0,
    ∴k=2,
    ∴直线AB的解析式为y=2x+8;
    (2)∵A(0,8),B(﹣4,0),
    ∴OA=8,OB=4,AB=4,
    ∵CD是AB的垂直平分线,
    ∴∠ACD=90°,AC=AB=2,
    ∵∠ACD=∠AOB=90°,∠CAD=∠OAB,
    ∴△CAD∽△OAB,
    ∴,
    ∴,
    ∴CD=,
    (3)∵△CAD∽△OAB,
    ∴,
    ∴,
    ∴AD=5,
    ∴OD=OA﹣AD=3,D(0,3),
    当CD=DE时,DE=,
    ∴E(0,5+)或(0,5﹣),
    当CD=CE时,如图1,
    ∵A(0,8),B(﹣4,0),
    ∴C(﹣2,4),
    过点C作CF⊥y轴于F,
    ∴DF=EF,F(0,4),
    ∴E(0,5);
    当CE=DE时,如图2,过E作E'G⊥CD,则E'G是线段CD的中垂线,
    ∵AB⊥CD,
    ∴E'G是△ACD的中位线,
    ∴DE'=AE'=AD=,
    ∴OE'=OD+DE'=,
    ∴E(0,),
    即:满足题意的点E坐标为(0,5+)或(0,5﹣)或(0,5)或(0,).
    本题考查了待定系数法求一次函数解析式,勾股定理,线段垂直平分线的性质,相似三角形的判定与性质,等腰三角形的性质及分类讨论的数学思想,熟练掌握待定系数法、相似三角形的判定与性质、类讨论的数学思想是解答本题的关键.
    题号





    总分
    得分

    相关试卷

    2024年广东省广州大附属中学九上数学开学质量跟踪监视模拟试题【含答案】:

    这是一份2024年广东省广州大附属中学九上数学开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年广安市重点中学数学九上开学质量跟踪监视模拟试题【含答案】:

    这是一份2024年广安市重点中学数学九上开学质量跟踪监视模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年甘肃省兰州十九中学教育集团九上数学开学质量跟踪监视模拟试题【含答案】:

    这是一份2024年甘肃省兰州十九中学教育集团九上数学开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map