2024-2025学年湖南省永州市宁远县九上数学开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平面直角坐标系中,一次函数的图象与轴、轴分别相交于点,,点的坐标为,且点在的内部,则的取值范围是( )
A.B.C.D.或
2、(4分)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是( )
A.甲和乙B.乙和丙C.甲和丙D.只有丙
3、(4分)下列说法中,错误的是( )
A.两组对边分别相等的四边形是平行四边形
B.有一个角是直角的平行四边形是矩形
C.有三条边相等的四边形是菱形
D.对角线互相垂直的矩形是正方形
4、(4分)为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小明和小刚进行米短道速滑训练,他们的五次成绩如下表所示:
设两个人的五次成绩的平均数依次为、,方差依次为、,则下列判断正确的是( )
A.B.
C.D.
5、(4分)如图所示,一次函数的图像可能是 ( )
A.B.C.D.
6、(4分)一艘轮船在静水中的最大航速为,它以最大航速沿河顺流航行所用时间,和它以最大航速沿河逆流航行所用时间相等,设河水的流速为,则可列方程为( )
A.B.C.D.
7、(4分)的取值范围如数轴所示,化简的结果是( )
A.B.C.D.
8、(4分)已知:菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为【 】
A.6cm B.4cm C.3cm D.2cm
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,矩形ABCD中,O是两对角线交点,于点E,若
10、(4分)一组数据:,计算其方差的结果为__________.
11、(4分)函数的自变量的取值范围是 .
12、(4分)已知:如图,△ABC中,∠ACB=90°,AB=5cm,AC=4cm,CD⊥AB于D,求CD的长及三角形的面积.
13、(4分)请你写出一个有一根为0的一元二次方程:______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,是的直径, 直线与相切于点,且与的延长线交于点,点是的中点 .
(1) 求证:;
(2) 若,的半径为 3 ,一只蚂蚁从点出发, 沿着爬回至点,求蚂蚁爬过的路程,, 结果保留一位小数) .
15、(8分)阅读材料,解答问题:
有理化因式:两个含有根式的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:的有理化因式是;1﹣的有理化因式是1+.
分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘以分母的有理化因式,达到化去分母中根号的目的.如:
﹣1,.
请根据上述材料,计算:的值.
16、(8分)布袋中放有x只白球、y只黄球、2只红球,它们除颜色外其他都相同,如果从布袋中随机摸出一个球,恰好是红球的概率是.
(1)试写出y与x的函数关系式;
(2)当x=6时,求随机地取出一只黄球的概率P.
17、(10分)菱形ABCD中,∠BAD=60°,BD是对角线,点E、F分别是边AB、AD上两个点,且满足AE=DF,连接BF与DE相交于点G.
(1)如图1,求∠BGD的度数;
(2)如图2,作CH⊥BG于H点,求证:2GH=GB+DG;
(3)在满足(2)的条件下,且点H在菱形内部,若GB=6,CH=4,求菱形ABCD的面积.
18、(10分)如图,在平面直角坐标系中,直线l1:y=﹣x+2向下平移1个单位后,得到直线l2,l2交x轴于点A,点P是直线l1上一动点,过点P作PQ∥y轴交l2于点Q
(1)求出点A的坐标;
(2)连接AP,当△APQ为以PQ为底边的等腰三角形时,求点P和点Q的坐标;
(3)点B为OA的中点,连接OQ、BQ,若点P在y轴的左侧,M为直线y=﹣1上一动点,当△PQM与△BOQ全等时,求点M的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)梯形ABCD中,AD∥BC,E在线段AB上,且2AE=BE,EF∥BC交CD于F,AD=15,BC=21,则EF=__________.
20、(4分)直角三角形的两边长为6cm,8cm,则它的第三边长是_____________。
21、(4分)如图,点O是矩形ABCD的对角线AC的中点,M是AD的中点,若OM=3,BC=8,则OB的长为 ________。
22、(4分)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为 .
23、(4分)函数 yl=" x" ( x ≥0 ) ,( x > 0 )的图象如图所示,则结论:①两函数图象的交点A的坐标为(3 ,3 ) ②当 x > 3时,③当 x =1时, BC = 8
④当 x 逐渐增大时, yl随着 x 的增大而增大,y2随着 x 的增大而减小.其中正确结论的序号是_ .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图所示,在菱形ABCD中,AC是对角线,CD=CE,连接DE.
(1)若AC=16,CD=10,求DE的长.
(2)G是BC上一点,若GC=GF=CH且CH⊥GF,垂足为P,求证:DH=CF.
25、(10分)某班“数学兴趣小组”对函数y=x−2|x|的图象和性质进行了探究,探究过程如下,请补充完整:
(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:
其中,m=___.
(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.
(3)探究函数图象发现:
①函数图象与x轴有___个交点,所以对应的方程x−2|x|=0有___个实数根;
②方程x−2|x|=−有___个实数根;
③关于x的方程x−2|x|=a有4个实数根时,a的取值范围是___.
26、(12分)某校师生去外地参加夏令营活动,车票价格为每人100元,车站提出两种车票价格的优惠方案供学校选择.第一种方案是教师按原价付款,学生按原价的78%付款;第二种方案是师生都按原价的80%付款.该校参加这项活动的教师有5名,学生有x名.
(1)设购票付款为y元,请写出y与x的关系式.
(2)请根据夏令营的学生人数,选择购票付款的最佳方案?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
先根据函数解析式求出点A、B的坐标,再根据题意得出,,解不等式组即可求得.
【详解】
函数,
,,
点在的内部,
,,
.
故选:.
本题考查了一次函数图象上点的坐标特征,掌握函数与坐标轴的特征及依据题意列出不等式是解题的关键.
2、B
【解析】
分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.
详解:乙和△ABC全等;理由如下:
在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,
所以乙和△ABC全等;
在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,
所以丙和△ABC全等;
不能判定甲与△ABC全等;
故选B.
点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
3、C
【解析】
分别利用平行四边形、矩形、菱形及正方形的判定方法对四个选项逐项判断即可.
【详解】
A. 利用平行四边形的判定定理可知两组对边分别相等的四边形是平行四边形正确;
B. 利用矩形的判定定理可知有一个角是直角的平行四边形是矩形正确;
C. 根据四条边相等的四边形是菱形可知本选项错误;
D. 根据正方形的判定定理可知对角线互相垂直的矩形是正方形正确,
故选C.
此题考查正方形的判定,平行四边形的判定,矩形的判定,解题关键在于掌握各性质定义.
4、B
【解析】
根据平均数和方差的定义分别计算可得.
【详解】
解:==55,
==55,
则=×[(58-55)2+2×(53-55)2+(51-55)2+(60-55)2]=11.6,
=×[(54-55)2+(53-55)2+(56-55)2+(55-55)2+(57-55)2]=2,
故选:B.
本题主要考查了方差的计算,熟记方差的计算公式是解决此题的关键.
5、D
【解析】
分析:根据题意,当m≠0时,函数y=mx+m是一次函数,结合一次函数的性质,分m>0与m<0两种情况讨论,可得答案.
详解:根据题意,当m≠0时,函数y=mx+m是一次函数,
有两种情况:
(1)当m>0时,其图象过一二三象限,D选项符合,
(2)当m<0时,其图象过二三四象限,没有选项的图象符合,
故选D.
点睛:本题考查了一次函数的定义、图象和性质.熟练应用一次函数的性质对图象进行辨别是解题的关键.
6、C
【解析】
分析题意,由江水的流速为vkm/h,可知顺水速度为(40+v)km/h,逆水速度为(40-v)km/h;
根据题意可得等量关系:以以最大航速沿河顺流航行所用时间和它以最大航速沿河逆流航行所用时间相等,根据顺流时间=逆流时间,列出方程即可.
【详解】
设水的流速为vkm/h,根据题意得:
本题考查了分式方程的应用,分析题意,根据路程、速度、时间的关系,找出等量关系是解题的关键。
7、D
【解析】
先由数轴判断出,再根据绝对值的性质、二次根式的性质化简即可.
【详解】
解:由数轴可知,,
,
原式,
故选:.
本题考查的是二次根式的化简,掌握二次根式的性质、数轴的概念是解题的关键.
8、C
【解析】∵四边形ABCD是菱形,∴OB=OD,CD=AD=6cm,
∵OE∥DC,∴OE是△BCD的中位线。∴OE=CD=3cm。故选C。
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3
【解析】
先根据矩形的性质得到AO=OD,再根据特殊角的三角函数值得到∠OAE=30°,进而求得OE的长,然后即可得解.
【详解】
∵四边形ABCD为矩形,
∴OA=OD,
在Rt△AOE中,
∵,
∴sin∠OAE=,
∴∠OAE=30°,
则OE=AE·tan∠OAE=×=1,
OA===2,
故DE=OE+OD=OE+OA=3.
故答案为3.
本题主要考查解直角三角形,特殊角的三角函数,矩形的性质,熟练掌握其知识点是解此题的关键.
10、
【解析】
方差是用来衡量一组数据波动大小的量.数据5,5,5,5,5全部相等,没有波动,故其方差为1.
【详解】
解:由于方差是反映一组数据的波动大小的,而这一组数据没有波动,故它的方差为1.
故答案为:1.
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
11、x>1
【解析】
解:依题意可得,解得,所以函数的自变量的取值范围是
12、S△ABC=6cm2,CD=cm.
【解析】
利用勾股定理求得BC=3cm,根据直角三角形的面积等于两直角边乘积的一半即可求得△ABC的面积,再利用直角三角形的面积等于斜边乘以斜边上高的一半可得AB•CD=6,由此即可求得CD的长.
【详解】
∵∠ACB=90°,AB=5cm,AC=4cm,
∴BC==3cm,
则S△ABC=×AC×BC=×4×3=6(cm2).
根据三角形的面积公式得:AB•CD=6,
即×5×CD=6,
∴CD=cm.
本题考查了勾股定理、直角三角形面积的两种表示法,根据勾股定理求得BC=3cm是解决问题的关键.
13、
【解析】
根据一元二次方程定义,只要是一元二次方程,且有一根为0即可.
【详解】
可以是,=0等.
故答案为:
本题考核知识点:一元二次方程的根. 解题关键点:理解一元二次方程的意义.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)蚂蚁爬过的路程11.3.
【解析】
(1) 连接,根据切线的性质得到,证明,根据平行线的性质证明;
(2) 根据圆周角定理得到,根据勾股定理、 弧长公式计算即可 .
【详解】
解:(1) 连接,
直线与相切,
,
点是的中点,
,
,
,
,
,
;
(2) 解:,
,
由圆周角定理得,,
,,,
蚂蚁爬过的路程.
本题考查的是切线的性质、 弧长的计算, 掌握圆的切线垂直于经过切点的半径、 弧长公式是解题的关键 .
15、
【解析】
分别把每个加数分母有理化,再合并即可得到答案.
【详解】
解:
本题考查的是分母有理化,即二次根式的除法运算,掌握分母有理化的方法是解题的关键.
16、 (1) y=14-x;(2)
【解析】
(1)由2只红球的概率可求出布袋中球的总数16只,得到x+y=14,从而得到y与x的函数关系式;
(2)先求出黄球的数量,然后根据概率的求法直接得出答案.
【详解】
解:(1)因为布袋中放有x只白球、y只黄球、2只红球,且红球的概率是.
所以可得:y=14-x;
(2)把x=6,代入y=14-6=8,
所以随机地取出一只黄球的概率P==.
故答案为(1) y=14-x;(2).
本题考查了求随机事件的概率.
17、(1)∠BGD=120°;(2)见解析;(3)S四边形ABCD=26.
【解析】
(1)只要证明△DAE≌△BDF,推出∠ADE=∠DBF,由∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,推出∠BGD=180°-∠BGE=120°;
(2)如图3中,延长GE到M,使得GM=GB,连接BD、CG.由△MBD≌△GBC,推出DM=GC,∠M=∠CGB=60°,由CH⊥BG,推出∠GCH=30°,推出CG=2GH,由CG=DM=DG+GM=DG+GB,即可证明2GH=DG+GB;
(3)解直角三角形求出BC即可解决问题;
【详解】
(1)解:如图1﹣1中,
∵四边形ABCD是菱形,
∴AD=AB,
∵∠A=60°,
∴△ABD是等边三角形,
∴AB=DB,∠A=∠FDB=60°,
在△DAE和△BDF中,
,
∴△DAE≌△BDF,
∴∠ADE=∠DBF,
∵∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,
∴∠BGD=180°﹣∠BGE=120°.
(2)证明:如图1﹣2中,延长GE到M,使得GM=GB,连接CG.
∵∠MGB=60°,GM=GB,
∴△GMB是等边三角形,
∴∠MBG=∠DBC=60°,
∴∠MBD=∠GBC,
在△MBD和△GBC中,
,
∴△MBD≌△GBC,
∴DM=GC,∠M=∠CGB=60°,
∵CH⊥BG,
∴∠GCH=30°,
∴CG=2GH,
∵CG=DM=DG+GM=DG+GB,
∴2GH=DG+GB.
(3)如图1﹣2中,由(2)可知,在Rt△CGH中,CH=4,∠GCH=30°,
∴tan30°=,
∴GH=4,
∵BG=6,
∴BH=2,
在Rt△BCH中,BC=,
∵△ABD,△BDC都是等边三角形,
∴S四边形ABCD=2•S△BCD=2××()2=26.
本题考查菱形的性质、等边三角形的判定和性质、全等三角形的判定和性质,直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
18、(1)A(2,0);(2)P(3,),Q(3,﹣);(3)M(﹣1,﹣1)或(﹣1,8)
【解析】
(1)求出直线l2的解析式为y=﹣x+1,即可求A的坐标;
(2)设点P(x,﹣x+2),Q(x,﹣x+1),由AQ=AP,即可求P点坐标;
(3)设P(n,﹣n+2),M(m,﹣1),则Q(n,﹣n+1),可求出BQ=,OQ=,PM=,QM=,①当△PQM≌△BOQ时,PM=BQ,QM=OQ,结合勾股定理,求出m;②当△QPM≌△BOQ时,有PM=OQ,QM=BQ,结合勾股定理,求出m即可.
【详解】
解:(1)∵直线l1:y=﹣x+2向下平移1个单位后,得到直线l2,
∴直线l2的解析式为y=﹣x+1,
∵l2交x轴于点A,
∴A(2,0);
(2)当△APQ为以PQ为底边的等腰三角形时,
∴AQ=AP,
∵点P是直线l1上一动点,
设点P(x,﹣x+2),
∵过点P作PQ∥y轴交l2于点Q
∴Q(x,﹣x+1),
∴(﹣x+2)2=(﹣x+1)2,
∴x=3,
∴P(3,),Q(3,﹣);
(3)∵点B为OA的中点,
∴B(1,0),
∴PQ=BO=1,
设P(n,﹣n+2),M(m,﹣1),则Q(n,﹣n+1),
∴BQ=,OQ=,
PM=,QM=,①
∵△PQM与△BOQ全等,
①当△PQM≌△BOQ时,
有PM=BQ,QM=OQ,
=,=,
∴n=2m﹣2,
∵点P在y轴的左侧,
∴n<0,
∴m<1,
∴m=﹣1,
∴M(﹣1,﹣1);
②当△QPM≌△BOQ时,
有PM=OQ,QM=BQ,
=,=,
∴n=﹣m,
∵点P在y轴的左侧,
∴n<0,
∴m>2,
∴m=8,
∴M(﹣1,8);
综上所述,M(﹣1,﹣1)或M(﹣1,8).1:y=﹣x+2向下平移1个单位后,得到直线l2,
本题考查一次函数的综合;熟练掌握一次函数的图象特点,等腰三角形与全等三角形的性质是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、17
【解析】
过作构造平行四边形及相似三角形,利用平行四边形及相似三角形的性质可得答案.
【详解】
如图,过作交于,交于,因为AD∥BC,EF∥BC,
所以四边形 四边形,四边形都为平行四边形,则,
因为,所以,
因为EF∥BC,所以,所以,
因为2AE=BE,,,
所以,所以,所以.
故答案为:.
本题考查等腰梯形中通过作腰的平行线构造平行四边形及相似三角形,考查平行四边形的性质及相似三角形的性质,掌握这些性质是解题的关键.
20、10cm或cm.
【解析】
分8cm的边为直角边与斜边两种情况,利用勾股定理进行求解即可.
【详解】
解:当8cm的边为直角边时,
第三边长为=10cm;
当8cm的边为斜边时,
第三边长为cm.
故答案为:10cm或cm.
本题主要考查勾股定理,解此题的关键在于分情况讨论.
21、5
【解析】
根据矩形的性质求出∠D=90°,OA=OB,AD=BC=8,求出AM,根据勾股定理求出OA即可.
【详解】
∵四边形ABCD为矩形,点M为AD的中点
∴点O为AC的中点,BC=AD=8,AC=BD
∴MO为三角形ACD的中位线
∴MO=CD,即CD=6
∴在直角三角形ACD中,由勾股定理得,AC==10。
∴OB=BD=AC=5.
本题考查了矩形的性质、勾股定理、三角形的中位线等知识点,能熟记矩形的性质是解此题的关键,注意:矩形的对边相等,矩形的对角线互相平分且相等,矩形的每个角都是直角.
22、20%.
【解析】
解答此题利用的数量关系是:商品原来价格×(1-每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.
【详解】
设这种商品平均每次降价的百分率为x,根据题意列方程得,
125(1−x)2=80,
解得x1=0.2=20%,x2=1.8(不合题意,舍去);
故答案为20%
本题考查了一元二次方程的应用,读懂题意列出关系式是解题的关键.
23、①③④
【解析】
逐项分析求解后利用排除法求解.①可列方程组求出交点A的坐标加以论证.②由图象分析论证.③根据已知先确定B、C点的坐标再求出BC.④由已知和函数图象分析.
解:①根据题意列解方程组,
解得,;
∴这两个函数在第一象限内的交点A的坐标为(3,3),正确;
②当x>3时,y1在y2的上方,故y1>y2,错误;
③当x=1时,y1=1,y2==9,即点C的坐标为(1,1),点B的坐标为(1,9),所以BC=9-1=8,正确;
④由于y1=x(x≥0)的图象自左向右呈上升趋势,故y1随x的增大而增大,
y2=(x>0)的图象自左向右呈下降趋势,故y2随x的增大而减小,正确.
因此①③④正确,②错误.
故答案为①③④.
本题考查了一次函数和反比例函数图象的性质.解决此类问题的关键是由已知和函数图象求出正确答案加以论证.
二、解答题(本大题共3个小题,共30分)
24、(1)2(2)见解析
【解析】
(1)连接BD交AC于K.想办法求出DK,EK,利用勾股定理即可解决问题;
(2)证明:过H作HQ⊥CD于Q,过G作GJ⊥CD于J.想办法证明∠CDH=∠HGJ=45°,可得DH=QH解决问题.
【详解】
(1)解:连接BD交AC于K.
∵四边形ABCD是菱形,
∴AC⊥BD,AK=CK=8,
在Rt△AKD中,DK==6,
∵CD=CE,
∴EK=CE﹣CK=10﹣8=2,
在Rt△DKE中,DE==2.
(2)证明:过H作HQ⊥CD于Q,过G作GJ⊥CD于J.
∵CH⊥GF,
∴∠GJF=∠CQH=∠GPC=90°,
∴∠QCH=∠JGF,
∵CH=GF,
∴△CQH≌△GJF(AAS),
∴QH=CJ,
∵GC=GF,
∴∠QCH=∠JGF=∠CGJ,CJ=FJ=CF,
∵GC=CH,
∴∠CHG=∠CGH,
∴∠CDH+∠QCH=∠HGJ+∠CGJ,
∴∠CDH=∠HGJ,
∵∠GJF=∠CQH=∠GPC=90°,
∴∠CDH=∠HGJ=45°,
∴DH=QH,
∴DH=2QH=CF.
本题考查菱形的性质、勾股定理、全等三角形的判定(AAS)和性质,解题的关键是掌握菱形的性质、勾股定理、全等三角形的判定(AAS)和性质.
25、(1)0;(2)见解析;(3)①3、3;②4;③0【解析】
(1)根据当x=2或x=-2时函数值相等即可得;
(2)将坐标系中y轴左侧的点按照从左到右的顺序用平滑的曲线依次连接可得;
(3)①根据函数图象与x轴的交点个数与对应方程的解的个数间的关系可得;
②由直线y=-与y=x-2|x|的图象有4个交点可得;
③关于x的方程x-2|x|=a有4个实数根时,0【详解】
(1)由函数解析式y=x−2|x|知,当x=2或x=−2时函数值相等,
∴当x=−2时,m=0,
故答案为:0;
(2)如图所示:
(3)①由图象可知,函数图象与x轴有3个交点,所以对应的方程x−2|x|=0有3个实数根;
②由函数图象知,直线y=−与y=x−2|x|的图象有4个交点,
所以方程x−2|x|=−有4个实数根;
③由函数图象知,关于x的方程x−2|x|=a有4个实数根时,0故答案为:0故答案为:①3、3;②4;③0此题考查二次函数的性质,抛物线与坐标轴的交点,解题关键在于结合函数图象进行解答.
26、(1)第一种方案:y=78x+500,第二种方案:y=80x+400;(2)当学生人数少于50人时,按方案二购买,当学生人数为50人时,两种方案一样,当学生人数超过50人时,按方案一购买.
【解析】
(1)根据两种不同的付款方案分别列出两种y与x的关系式;(2)根据两种方案中其中之一更便宜可以得到不等式,解此不等式可知根据夏令营的学生人数选择购票付款的最佳方案.
【详解】
解:(1)由题意可得,
第一种方案中:y=5×100+100x×78%=78x+500,
第二种方案中:y=100(x+5)×80%=80x+400;
(2)
如果第一种方案更便宜,则有,
78x+500<80x+400,
解得,x>50,
如果第二种方案更便宜,则有,
78x+500>80x+400,
解得,x<50,
如果两种方案价格一样,则有,
78x+500=80x+400,
解得,x=50,
∴当学生人数少于50人时,按方案二购买,
当学生人数为50人时,两种方案一样,
当学生人数超过50人时,按方案一购买.
本题主要考查一次函数在实际中的应用,根据人数、价格和优惠方案找出等量关系,列出一次函数关系式.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年湖北省随州随县联考九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年湖北省随州随县联考九上数学开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖北省荆州松滋市数学九上开学质量跟踪监视试题【含答案】: 这是一份2024-2025学年湖北省荆州松滋市数学九上开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省罗山县数学九上开学质量跟踪监视试题【含答案】: 这是一份2024-2025学年河南省罗山县数学九上开学质量跟踪监视试题【含答案】,共29页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。