


2024-2025学年湖南省怀化市九上数学开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列计算正确的是( )
A.m6•m2=m12B.m6÷m2=m3
C.()5=D.(m2)3=m6
2、(4分)菱形的对角线不一定具有的性质是( )
A.互相平分B.互相垂直C.每一条对角线平分一组对角D.相等
3、(4分)如图,有一块直角三角形纸片,两直角边AB=6,BC=8,将△ABC折叠,使AB落在斜边AC上,折痕为AD,则BD的长为( )
A.6B.5C.4D.3
4、(4分)下列长度的三条线段,能成为一个直角三角形的三边的一组是( )
A.B.1,2,C.2,4,D.9,16,25
5、(4分)化简的结果是( )
A.B.C.D.
6、(4分)给出下列几组数:① 4,5,6;②8,15,16;③n2-1,2n,n2+1;④m2-n2,2mn,m2+n2(m>n>0).其中—定能组成直角三角形三边长的是( ).
A.①② B.③④ C.①③④ D.④
7、(4分)已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是( )
A.﹣4 B.﹣6 C.14 D.6
8、(4分)下列图形中,既是轴对称又是中心对称图形的是( )
A.正方形B.等边三角形C.平行四边形D.正五边形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,点D是Rt△ABC斜边AB的中点,AC=1,CD=1.5,那么BC=_____.
10、(4分)已知,函数y=(k-1)x+k2-1,当k________时,它是一次函数.
11、(4分)已知关于x的一次函数同时满足下列两个条件:函数y随x的增大而减小;当时,对应的函数值,你认为符合要求的一次函数的解析式可以是______写出一个即可.
12、(4分)将直线向上平移4个单位后,所得的直线在平面直角坐标系中,不经过第_________象限.
13、(4分)在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过的象限是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)关于x的方程(2m+1)x2+4mx+2m﹣3=0有两个不相等的实数根.
(1)求m的取值范围;
(2)是否存在实数m,使方程的两个实数根的倒数之和等于﹣1?若存在,求出m的值;若不存在,说明理由.
15、(8分)如图,直线y=kx+k交x轴,y轴分别于A,C,直线BC过点C交x轴于B,OC=3OA,∠CBA=45∘.
(1)求直线BC的解析式;
(2)动点P从A出发沿射线AB匀速运动,速度为2个单位/秒,连接CP,设△PBC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式,直接写出t的取值范围;
16、(8分)某地农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜该地农业部门对2017年的油菜籽的生产成本、市场价格、种植面积和产量等进行了统计,并绘制了如下的统计表与统计图(如图):
请根据以上信息解答下列问题:
(1)种植每亩油菜所需种子的成本是多少元?
(2)农民冬种油菜每亩获利多少元?
(3)2017年该地全县农民冬种油菜的总获利是多少元?(结果用科学记数法表示).
17、(10分)如图,正方形的边长为8,在上,且,是上的一动点,求的最小值.
18、(10分)为了解某校八年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.
(1)本次抽测的男生有 人,抽测成绩的众数是 ;
(2)请你将图2的统计图补充完整;
(3)若规定引体向上5次以上(含5次)为体能达标,则该校400名八年级男生中估计有多少人体能达标?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,经过点B(-2,0)的直线与直线相交于点A(-1,-2),则不等式的解集为 .
20、(4分)当a=-3时, =_____.
21、(4分)一组数据7,5,4,5,9的方差是______.
22、(4分)在一个不透明的袋子里装有3个白色乒乓球和若干个黄色乒乓球,若从这个袋子里随机摸出一个乒乓球,恰好是黄球的概率为0.7,则袋子内共有乒乓球__________个。
23、(4分)函数的自变量x的取值范围是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,平行四边形ABCD中,点E为AB边上一点,请你用无刻度的直尺,在CD边上画出点 F,使四边形AECF为平行四边形,并说明理由.
25、(10分)如图,直线l1交x轴于A(3,0),交y轴于B(0,﹣2)
(1)求直线l1的表达式;
(2)将l1向上平移到C(0,3),得到直线l2,写出l2的表达式;
(3)过点A作直线l3⊥x轴,交l2于点D,求四边形ABCD的面积.
26、(12分)如图,在平行四边形ABCD中(AB>AD),AF平分∠DAB,交CD于点F,DE平分∠ADC,交AB于点E,AF与DE交于点O,连接EF
(1)求证:四边形AEFD为菱形;
(2)若AD=2,AB=3,∠DAB=60°,求平行四边形ABCD的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
分别根据同底数幂的乘法和除法法则、分式的乘方和幂的乘方法则计算各项即得答案.
【详解】
解:A、原式=m8 ≠m12,所以本选项不符合题意;
B、原式=m4≠m3,所以本选项不符合题意;
C、原式=≠,所以本选项不符合题意;
D、原式=m6,所以本选项符合题意.
故选:D.
此题考查了分式的乘方,同底数幂的乘法,幂的乘方以及同底数幂的除法等运算法则,熟练掌握幂的运算性质是解本题的关键.
2、D
【解析】
根据菱形的对角线性质,即可得出答案.
【详解】
解:∵菱形的对角线互相垂直平分,且每一条对角线平分一组对角,
∴菱形的对角线不一定具有的性质是相等;
故选:D.
此题主要考查了菱形的对角线性质,熟记菱形的对角线互相垂直平分,且每一条对角线平分一组对角是解题的关键.
3、D
【解析】
设点B落在AC上的E点处,连接DE,如图所示,由三角形ABC为直角三角形,由AB与BC的长,利用勾股定理求出AC的长,设BD=x,由折叠的性质得到ED=BD=x,AE=AB=6,进而表示出CE与CD,在直角三角形DEC中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出BD的长.
【详解】
解:∵△ABC为直角三角形,AB=6,BC=8,
∴根据勾股定理得:,
设BD=x,由折叠可知:ED=BD=x,AE=AB=6,
可得:CE=AC-AE=10-6=4,CD=BC-BD=8-x,
在Rt△CDB'中,
根据勾股定理得:(8-x)2=42+x2,
解得:x=1,
则BD=1.
故答案为:1.
此题考查了勾股定理,利用了方程的思想,熟练掌握勾股定理的解本题的关键.
4、B
【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【详解】
A、∵()2+()2≠()2,∴不能构成直角三角形,故本选项错误;
B、∵12+()2=22,∴能构成直角三角形,故本选项正确;
C、∵22+()2≠42,∴不能构成直角三角形,故本选项错误;
D、∵92+162≠252,∴不能构成直角三角形,故本选项错误.
故选B.
本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.
5、C
【解析】
直接利用二次根式的乘法运算法则,计算得出答案.
【详解】
解:,
故选择:C.
此题主要考查了二次根式的乘法运算,正确化简二次根式是解题的关键.
6、D
【解析】①42+52≠62,∴不能组成直角三角形;②82+152≠162,∴不能组成直角三角形;③当n=1时,三边长为:0、2、2,不能组成直角三角形;④(m2-n2)2+( 2mn)2=( m2+n2)2,且m>n>0,∴能组成直角三角形.
故选D.
点睛:本题关键在于勾股定理逆定理的运用.
7、D
【解析】
根据题意可得知﹣5≤x≤5,当x=5时,m取最大值,将x=5代入即可得出结论.
【详解】
解:已知对于任意一个x,m都取y1,y2中的最小值,
且求m得最大值,
因为y1,y2均是递增函数,
所以在x=5时,m取最大值,
即m取x=5时,y1,y2中较小的一个,是y1=6.
故选D.
本题考察直线图像的综合运用,能够读懂题意确定m是解题关键.
8、A
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、正方形既是轴对称图形,也是中心对称图形,故选A正确;
B、等边三角形是轴对称图形,不是中心对称图形,故选项B错误;
C、平行四边形不是轴对称图形,是中心对称图形,故C错误;
D、正五边形是轴对称图形,不是中心对称图形,故选项D错误.
故选A.
本题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
首先根据直角三角形斜边中线定理得出AB,然后利用勾股定理即可得出BC.
【详解】
∵在Rt△ABC中,∠ACB=90°,D是AB的中点,
∴AB=2CD=17,
∴BC===2,
故答案为:2.
此题主要考查直角三角形斜边中线定理以及勾股定理的运用,熟练掌握,即可解题.
10、k≠1.
【解析】
分析:
由一次函数的定义进行分析解答即可.
详解:
∵函数y=(k-1)x+k2-1是一次函数,
∴,解得:.
故答案为:.
点睛:熟记:一次函数的定义:“形如的函数叫做一次函数”是解答本题的关键.
11、(答案不唯一)
【解析】
先设一次函数,由一次函数y随x的增大而减小可得:,由当时,对应的函数值可得:,故符合条件的一次函数中,即可.
【详解】
设一次函数,
因为一次函数y随x的增大而减小,
所以,
因为当时,对应的函数值
所以,
所以符合条件的一次函数中,即可.
故答案为:.
本题主要考查一次函数图象和性质,解决本题的关键是要熟练掌握一次函数图象和性质.
12、四
【解析】
根据一次函数图象的平移规律,可得答案.
【详解】
解:由题意得:平移后的解析式为:,即,
直线经过一、二、三象限,不经过第四象限,
故答案为:四.
本题考查了一次函数图象与几何变换,利用一次函数图象的平移规律是解题关键,注意求直线平移后的解析式时要注意平移时的值不变.
13、第三象限
【解析】分析:
根据直线y=kx+b在平面直角坐标系中所经过象限与k、b值的关系进行分析解答即可.
详解:
∵直线y=kx+b经过第一、三、四象限,
∴k>0,b<0,
∴直线y=bx+k经过第一、二、四象限,
∴直线y=bx+k不经过第三象限.
故答案为:第三象限.
点睛:熟知:“直线y=kx+b在平面直角坐标系中所经过的象限与k、b的值的关系”是解答本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)m>﹣且m≠﹣;(2)不存在.理由见解析.
【解析】
(1)根据方程有两个不相等的实数根结合根的判别式以及二次项系数不为0,即可得出关
于m的一元一次不等式组,解不等式组即可得出结论;
(2)利用根与系数的关系即可求解.
【详解】
(1)∵方程有2个不相等的实数根,
∴△>0,即16m2﹣4×(2m+1)(2m﹣3)>0,
解得:m>,
又2m+1≠0,
∴m≠,
∴m>且 m≠;
(2)∵x1+x2=、x1x2=,
∴=,
由=﹣1可得=﹣1,
解得:m=,
∵,
∴不存在.
本题考查了根的判别式,解题关键是根据方程解的个数结合二次项系数不为0得出关于m的一元一次不等式组.
15、 (1) BC的解析式是y=−x+3;(2)当0
【解析】
(1)令y=0,即可求得A的坐标,根据OC=3OA即可求得C的坐标,再根据∠CBA=45°,即△BOC的等腰直角三角形,则B的坐标即可求得,然后利用待定系数法求得BC的解析式;
(2)分成P在AB和在AB的延长线上两种情况进行讨论,利用三角形面积公式即可求解.
【详解】
(1)在y=kx+k中,令y=0,则x=−1,即A的坐标是(−1,0).
∵OC=3OA,
∴OC=3,即C的坐标是(0,3).
∵∠CBA=45∘,
∴∠OCB=∠CBA=45∘,
∴OB=OC=3,则B的坐标是(3,0).
设BC的解析式是y=kx+b,则,
解得:,
则BC的解析式是y=−x+3;
(2)当0
当t>2时,OP=2t−4,则S=×3(2t−4),即S=3t−6.
本题考查一次函数综合,解题的关键是掌握待定系数法求解析式.
16、(1)12元;(2)289.6元;(3)1.1584×108元
【解析】
(1)种植油菜每亩的种子成本=每亩油菜生产成本×种子所占的百分比即可;
(2)农民冬种油菜每亩获利的钱数=每亩的产量×油菜市场价格-每亩油菜生产成本.
(3)2017年全县农民冬种油菜的总获利=种油菜每亩获利的钱数×种植面积
【详解】
解:(1)根据题意得:
1-10%-35%-45%=10%,
120×10%=12(元),
答:种植油菜每亩的种子成本是12元;
(2)根据题意得:
128×3.2-120=289.6(元),
答:农民冬种油菜每亩获利289.6元;
(3)根据题意得:
289.6×400000=115840000=1.1584×108(元),
答:2014年南县全县农民冬种油菜的总获利为1.1584×108元.
本题主要考查应用数学的意识和利用数据解决实际问题的能力.解决此类问题的关键是分析图表各数据的联系,挖掘隐含意义.
17、的最小值是1.
【解析】
连接,,根据点与点关于对称和正方形的性质得到DN+MN的最小值即为线段BM的长.
【详解】
解:∵四边形是正方形,
∴点关于的对称点是点.
连接,,且交于点,与交于点,此时的值最小.
∵,正方形的边长为8,
∴,.
由,知.
又∵点与点关于对称,
∴且平分.∴.
∴.
∴的最小值是1.
本题考查轴对称的应用和勾股定理的基本概念.解答本题的关键是读懂题意,知道根据正方形的性质得到DN+MN的最小值即为线段BM的长.
18、(1)50,5次;(2)见解析;(3)该校400名八年级男生中有288人体能达标
【解析】
分析:(1)根据4次的有10人,占20%,据此即可求得总人数,然后求得5次的人数,根据众数的定义即可求得众数;
(2)根据(1)的结果即可作出图形;
(3)利用400乘以对应的比例即可求解;
详解:(1)抽测的总人数是:10÷20%=50(人),
次数是5次的人数是:50-4-10-14-6=16(人),
则众数是:5次;
(2)补图如下.
(3)该校350名八年级男生中估计能达标的人数是:400×=288(人);
点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
分析:不等式的解集就是在x下方,直线在直线上方时x的取值范围.
由图象可知,此时.
20、1
【解析】
把a=-1代入二次根式进行化简即可求解.
【详解】
解:当a=-1时,=1.
故答案为:1.
本题考查二次根式的计算,理解算术平方根的意义是解题的关键.
21、
【解析】
结合方差公式先求出这组数据的平均数,然后代入公式求出即可.
【详解】
解:这组数据的平均数为,
这组数据的方差为.
故答案为:.
此题主要考查了方差的有关知识,正确的求出平均数,并正确代入方差公式是解决问题的关键.
22、10
【解析】
分析:设有x个黄球,利用概率公式可得,解出x的值,可得黄球数量,再求总数即可.
【详解】
解:设黄色的乒乓球有x个,则:
解得:x=7
经检验,x=7是原分式方程的解
∴袋子里共有乒乓球7+3=10个
:此题主要考查了概率公式,关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数.
23、:x≠﹣1.
【解析】
根据分母不等于0列出不等式求解即可.
【详解】
解:由题意得,x+1≠0,
解得x≠﹣1.
故答案为x≠﹣1.
本题考查了函数自变量的范围,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
二、解答题(本大题共3个小题,共30分)
24、见详解.
【解析】
连接AC、BD交于点O,连接EO并延长交CD于点F;由平行四边形的性质得出AB∥CD,OA=OC,证明△AEO≌△CFO,得出AE=CF,即可得出结论.
【详解】
解:连接AC、BD交于点O,连接EO并延长交CD于点F;
则四边形AECF为平行四边形;理由如下:
∵四边形ABCD是平行四边形,
∴AB∥CD,OA=OC,
∴∠EAO=∠FCO,
在△AEO和△CFO中, ,
∴△AEO≌△CFO(ASA),
∴AE=CF,
又∵AE∥CF,
∴四边形AECF为平行四边形.
本题考查平行四边形的判定与性质、全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.
25、(1)直线l1的表达式为:y=x﹣2;(2)直线l2的表达式为:y=x+3;(3)四边形ABCD的面积=1.
【解析】
(1)利用待定系数法求直线l1 的表达式
(2)根据一次函数沿着y轴向上平移的规律求解
(3)根据题意可知四边形为平行四边形,又各点的坐标,可直接求解
【详解】
(1)设直线l1的表达式为:y=kx+b,
由题意可得: ,
解得: ,
所以,直线l1的表达式为:y= x﹣2;
(2)将l1向上平移到C(0,3)可知,向上平移了5个单位长度,由几何变换可得:直线l2的表达式为:y= x﹣2+5=x+3;
(3)根据题意可知AB∥CD,CB∥DA,可得四边形ABCD为平行四边形
∵已知B(0,﹣2)C(0,3)A(3,0)
∴BC=5,OA=3,
∴四边形ABCD的面积=5×3=1.
此题考查了待定系数法求二次函数解析式,一次函数图形与几何变换,平行四边形的面积,解题关键在于利用待定系数法求出k,b的值
26、(1)见解析;(2)3.
【解析】
(1)根据平行四边形的性质得到AB∥CD,得到∠EAF=∠DFA,根据角平分线的定义得到∠DAF=∠EAF,求得∠DAF=∠AFD,得到AD=DF,同理AD=AE,根据菱形的判定定理即可得到结论;
(2)过D作DH⊥AB于H,解直角三角形得到DE=,根据平行四边形的面积公式即可得到结论.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠EAF=∠DFA,
∵AF平分∠DAB,
∴∠DAF=∥EAF,
∴∠DAF=∠AFD,
∴AD=DF,
同理AD=AE,
∴DF=AE,
∴四边形AEFD是平行四边形,
∵AD=DF,
∴四边形AEFD为菱形;
(2)过D作DH⊥AB于H,
∵∠DAB=60°,AD=2,
∴DH=,
∴平行四边形ABCD的面积=DH•AB=3.
本题考查了菱形的判定和性质,平行四边形的性质,解直角三角形,熟练掌握菱形的判定定理是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年湖南省永州市宁远县九上数学开学质量跟踪监视试题【含答案】: 这是一份2024-2025学年湖南省永州市宁远县九上数学开学质量跟踪监视试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖北省随州随县联考九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年湖北省随州随县联考九上数学开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省南阳市南召县数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年河南省南阳市南召县数学九上开学质量跟踪监视模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。