2024-2025学年吉林省长春市第三中学九上数学开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列命题的逆命题成立的是( )
A.对顶角相等B.等边三角形是锐角三角形
C.正方形的对角线互相垂直D.平行四边形的对角线互相平分
2、(4分)如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于点D,DE⊥AB于点E,且AB=10,则△EDB的周长是( )
A.4B.6C.8D.10
3、(4分)下列计算中,正确的是( ).
A.B.
C.D.
4、(4分)下列函数中,自变量x的取值范围是x≥2的是()
A.B.
C.D.
5、(4分)化简的结果是( )
A.a-bB.a+bC.D.
6、(4分)已知分式方程,去分母后得( )
A.B.
C.D.
7、(4分)下列命题中:①两直角边对应相等的两个直角三角形全等;②两锐角对应相等的两个直角三角形全等;③斜边和一直角边对应相等的两个直角三角形全等;④一锐角和斜边对应相等的两个直角三角形全等;⑤一锐角和一边对应相等的两个直角三角形全等.其中正确的个数有( )
A.2个B.3个C.4个D.5个
8、(4分)二次根式有意义的条件是
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知a2-2ab+b2=6,则a-b=_________.
10、(4分)如果多边形的每个内角都等于,则它的边数为______.
11、(4分)小丽计算数据方差时,使用公式S2=,则公式中=__.
12、(4分)若分式 有意义,则的取值范围是_______________ .
13、(4分)如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3 cm到点D,则橡皮筋被拉长了_____ cm.
三、解答题(本大题共5个小题,共48分)
14、(12分)在平面直角坐标系中,已知一次函数与反比例函数.
(1)当在什么样的范围内,直线与曲线必有两个交点.
(2)在(1)的情况下,结合图像,当时,请直接写出自变量x的范围(用含字母k的代数式表示).
15、(8分)(1)因式分解:x2y﹣2xy2+y3
(2)解不等式组:
16、(8分)己知一次函数的图象过点,与y轴交于点B.求点B的坐标和k的值.
17、(10分)如图,在平面直角坐标系中,,并且满足.一动点从点出发,在线段上以每秒个单位长度的速度向点移动;动点从点出发在线段上以每秒个单位长度的速度向点运动,点分别从点同时出发,当点运动到点时,点随之停止运动.设运动时间为(秒)
(1)求两点的坐标;
(2)当为何值时,四边形是平行四边形?并求出此时两点的坐标.
(3)当为何值时,是以为腰的等腰三角形?并求出此时两点的坐标.
18、(10分)解下列方程:
(1); (2).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一组数据,,的方差为4,那么数据,,的方差是___________.
20、(4分)分解因式:2x2-8x+8=__________.
21、(4分)使有意义的x的取值范围是 .
22、(4分)写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式) .
23、(4分)已知函数关系式:,则自变量x的取值范围是 ▲ .
二、解答题(本大题共3个小题,共30分)
24、(8分)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.
(1)甲乙两种图书的售价分别为每本多少元?
(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)
25、(10分)如图所示.在Rt△ABC中,AB=CB,ED⊥CB,垂足为D点,且∠CED=60°,∠EAB=30°,AE=2,求CB的长.
26、(12分)如图,已知互余,∠2与∠3互补,.求的度数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
利用对顶角的性质、锐角三角形的定义、正方形的性质及平行四边形的性质分别判断后即可确定正确的选项.
【详解】
解:A、逆命题为相等的角是对顶角,不成立;
B、逆命题为:锐角三角形是等边三角形,不成立;
C、逆命题为:对角线互相垂直的四边形是正方形,不成立;
D、逆命题为:对角线互相平分的四边形是平行四边形,成立,
故选:D.
考查了命题与定理的知识,解题的关键是正确的写出一个命题的逆命题,难度不大.
2、D
【解析】
先证出Rt△ACD≌Rt△AED,推出AE=AC,△DBE的周长=DE+EB+BD=AB,即可求解.
【详解】
解:∵AD是∠BAC的平分线,DE⊥AB,∠C=90°,
∴∠C=∠AED=90°,CD=DE,
在Rt△ACD和Rt△AED中
∴Rt△ACD≌Rt△AED,
∴AE=AC,
∴△DBE的周长
=DE+EB+BD
=CD+DB+EB
=BC+EB
=AC+EB
=AE+EB
=AB
=10,
故选D.
本题考查了角平分线性质,全等三角形的性质和判定的应用,能求出AE=AC,CD=DE是解此题的关键,注意:角平分线上的点到角的两边的距离相等.
3、B
【解析】
根据二次根式的计算法则进行计算即可得出答案.
【详解】
解:A、,计算错误;B、计算正确;C、,计算错误;D、,计算正确;故选B.
点睛:本题主要考查的是二次根式的计算法则,属于基础题型.明确计算法则是解决这个问题的关键.
4、D
【解析】
根据分式与二次根式有意义的条件依次分析四个选项,比较哪个选项符合条件,可得答案.
【详解】
解:A、y=有意义,∴2-x≥0,解得x≤2;
B、y=有意义,∴x-2>0,解得x>2;
C、y=有意义,∴4-x2≥0,解得-2≤x≤2;
D、y=有意义,∴x+2≥0且x-2≥0,解得x≥2;
分析可得D符合条件;
故选:D.
本题考查函数自变量的取值问题,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
5、B
【解析】
直接将括号里面通分,进而分解因式,再利用分式的除法运算法则计算得出答案.
【详解】
.
故选B.
此题主要考查了分式的混合运算,熟练掌握运算法则是解题关键.
6、A
【解析】
两边都乘以最简公分母(x+2)(x-2)即可得出正确选项.
【详解】
解:方程两边都乘以最简公分母(x+2)(x-2),
得:x(x+2)-1=(x+2)(x-2),
即x(x+2)-1=x2-4,
故选:A.
本题主要考查解分式方程,准确找到最简公分母是解题的关键.
7、C
【解析】
根据全等三角形的判定定理逐项分析,作出判断即可.
【详解】
解:①两直角边对应相等,两直角相等,所以根据SAS可以判定两直角边对应相等的两个直角三角形全等.故①正确;
②两锐角对应相等的两个直角三角形不一定全等,因为对应边不一定相等.故②错误;
③斜边和一直角边对应相等的两个直角三角形,可以根据HL判定它们全等.故③正确;
④一锐角和斜边对应相等的两个直角三角形,可以根据AAS判定它们全等.故④正确;
⑤一锐角和一边对应相等的两个直角三角形,可以根据AAS或ASA判定它们全等.故⑤正确.
综上所述,正确的说法有4个.
故选:C.
本题考查了直角三角形全等的判定.直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.
8、A
【解析】
根据:二次根式被开方数必须是非负数才有意义.
【详解】
由m-2≥0得,.
故选A
本题考核知识点:二次根式有意义条件. 解题关键点:熟记二次根式有意义条件.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
由题意得(a-b)2="6," 则=
10、1
【解析】
先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.
【详解】
∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=1.
故答案为:1.
本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.
11、1
【解析】
分析:根据题目中的式子,可以得到的值,从而可以解答本题.
详解:∵S2=[(5﹣)2+(8﹣)2+(13﹣)2)2+(15﹣)2],∴=1.
故答案为1.
点睛:本题考查了方差、平均数,解答本题的关键是明确题意,求出相应的平均数.
12、
【解析】
【分析】根据分式有意义的条件进行求解即可得.
【详解】由题意得:x-1≠0,
解得:x≠1,
故答案为:x≠1.
【点睛】本题考查了分式有意义的条件,熟知分母不为0时分式有意义是解题的关键.
13、2.
【解析】
根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.
【详解】
Rt△ACD中,AC=AB=4cm,CD=3cm;
根据勾股定理,得:AD==5cm;
∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;
故橡皮筋被拉长了2cm.
故答案为2.
此题主要考查了等腰三角形的性质以及勾股定理的应用.
三、解答题(本大题共5个小题,共48分)
14、(1);(2).
【解析】
(1)将两个函数关系式消去y,得到关于x的方程,根据根的判别式大于0列出不等式,求出不等式的解集即可得到k的范围;
(2)由(1)可求出x的值,再根据k的值进一步求解即可.
【详解】
(1)
(2)由(1)得:
若由图像得:
若
由图像得:
此题考查了反比例函数与一次函数的交点,熟练掌握待定系数法是解本题的关键.
15、(1)y(x﹣y)2;(2)﹣3<x<2
【解析】
(1)由题意对原式提取公因式,再利用完全平方公式分解即可;
(2)根据题意分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.
【详解】
解:(1)原式=y(x2﹣2xy+y2)
=y(x﹣y)2;
(2),
由①得:x<2,
由②得:x>﹣3,
则不等式组的解集为:﹣3<x<2.
本题考查因式分解和解不等式组,熟练掌握提公因式法与公式法的综合运用以及解不等式组的方法是解答本题的关键.
16、点B的坐标为,
【解析】
根据一次函数的性质,与y轴交于点B,即,得解;将A坐标代入解析式即可得解.
【详解】
当时,,点B的坐标为
将点A的对应值,代入得,∴
此题主要考查一次函数的性质,熟练掌握,即可解题.
17、 (1);(2);(3) 或.
【解析】
(1)由二次根式有意义的条件可求出a、b的值,再根据已知即可求得答案;
(2)由题意得:,则,当时,四边形是平行四边形,由此可得关于t的方程,求出t的值即可求得答案;
(3)分、两种情况分别画出符合题意的图形,
【详解】
(1)由,
则,
,
∵AB//OC,A(0,12),B(a,c),
∴c=12,
∴;
(2)如图,
由题意得:,
则:,
当时,四边形是平行四边形,
,
解得:,
;
(3)当时,过作,则四边形AOQN是矩形,
∴AN=OQ=t,QN=OA=12,
∴PN=t,
由题意得:,
解得:,
故,
当时,过作轴,
由题意得:,
则,
解得:,
故.
本题考查了二次根式有意义的条件,平行形的性质,矩形的判定与性质,等腰三角形的性质,坐标与图形的性质等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
18、(1)x=5,x=−2;(2)-2
【解析】
(1)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可;
(2)因为2x+6=2(x+3),所以可得方程最简公分母为2(x+3),然后去分母转化为整式方程求解.
【详解】
(1)x(x−3)=10,
整理得:x−3x−10=0,
(x−5)(x+2)=0,
x−5=0,x+2=0,
x=5,x=−2;
(2)原方程的两边同时乘以2(x+3),
得:4+3(x+3)=7,
解这个方程,得x=−2,
检验:将x=−2代入2(x+3)时,该式等于2,
∴x=−2是原方程的根
此题考查解一元二次方程-因式分解法,解分式方程,掌握运算法则是解题关键
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4
【解析】
设数据,,的平均数为m,据此可得数据a+2,b+2,c+2的平均数为m+2,然后根据方差公式进行计算即可得.
【详解】
设数据,,的平均数为m,
则有a+b+c=3m,=4,
∴a+2,b+2,c+2的平均数为(a+2+b+2+c+2)÷3=(3m+6)÷3=m+2,
方差为:
==4,
故答案为:4.
本题考查了方差的计算,熟练掌握方差的计算公式是解题的关键.
20、2(x-2)2
【解析】
先运用提公因式法,再运用完全平方公式.
【详解】
:2x2-8x+8=.
故答案为2(x-2)2.
本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.
21、
【解析】
根据二次根式的定义可知被开方数必须为非负数,列不等式求解即可.
【详解】
根据二次根式的定义可知被开方数必须为非负数,列不等式得:
x+1≥0,
解得x≥﹣1.
故答案为x≥﹣1.
本题考查了二次根式有意义的条件
22、y=2x
【解析】
试题分析:根据正比例函数y=kx的图象经过一,三象限,可得k>0,写一个符合条件的数即可.
解:∵正比例函数y=kx的图象经过一,三象限,
∴k>0,
取k=2可得函数关系式y=2x.
故答案为y=2x.
点评:此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.
23、
【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须。
二、解答题(本大题共3个小题,共30分)
24、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.
【解析】
(1)乙种图书售价每本元,则甲种图书售价为每本元,根据“用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本”列出方程求解即可;
(2)设甲种图书进货本,总利润元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.
【详解】
(1)设乙种图书售价每本元,则甲种图书售价为每本元.由题意得:
,
解得:.
经检验,是原方程的解.
所以,甲种图书售价为每本元,
答:甲种图书售价每本28元,乙种图书售价每本20元.
(2)设甲种图书进货本,总利润元,则
.
又∵,
解得:.
∵随的增大而增大,
∴当最大时最大,
∴当本时最大,
此时,乙种图书进货本数为(本).
答:甲种图书进货533本,乙种图书进货667本时利润最大.
本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.
25、.
【解析】
直接利用直角三角形的性质结合勾股定理得出DC的长,进而得出BC的长.
【详解】
过E点作EF⊥AB,垂足为F.
∵∠EAB=30°,AE=2,∴EF=BD=1.
又∵∠CED=60°,∴∠ECD=30°.
∵AB=CB,∴∠CAB=∠ACB=45°,∴∠EAC=∠ECA=15°,∴AE=CE=2.
在Rt△CDE中,∵∠ECD=30°,∴ED=1,CD,∴CB=CD+BD=1.
本题考查了勾股定理以及直角三角形的性质,正确作出辅助线是解题的关键.
26、130°
【解析】
先根据∠2与∠3互补,∠3=140°,得出AB∥CD,∠2=40°,再根据∠1和∠2互余,得到∠1的度数,最后根据平行线的性质,即可得到∠4的度数.
【详解】
∵∠2与∠3互补,∠3=140°,
∴AB∥CD,∠2=180°-140°=40°,
又∵∠1和∠2互余,
∴∠1=90°-40°=50°,
∵AB∥CD,
∴∠4=180°-∠1=180°-50°=130°.
本题主要考查了平行线的性质与判定以及余角和补角计算的应用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年黄石市重点中学九上数学开学统考模拟试题【含答案】: 这是一份2024-2025学年黄石市重点中学九上数学开学统考模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖南省凤凰皇仓中学数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年湖南省凤凰皇仓中学数学九上开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖北省武汉第三寄宿中学数学九上开学统考试题【含答案】: 这是一份2024-2025学年湖北省武汉第三寄宿中学数学九上开学统考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。