2024-2025学年吉林省农安县三岗中学九上数学开学联考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)菱形的对角线长分别为6和8,则该菱形的面积是( )
A.24B.48C.12D.10
2、(4分)已知 x<3,则化简结果是()
A.-x-3B.x+3C.3-xD.x-3
3、(4分)某校5名同学在“国学经典颂读”比赛中,成绩(单位:分)分别是86,95,97,90,88,这组数据的中位数是( )
A.97B.90C.95D.88
4、(4分)下列对一次函数y=﹣2x+1的描述错误的是( )
A.y随x的增大而减小
B.图象经过第二、三、四象限
C.图象与直线y=2x相交
D.图象可由直线y=﹣2x向上平移1个单位得到
5、(4分)(2013年四川绵阳3分)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=【 】
A.cm B.cm C.cm D.cm
6、(4分)如图,在中,分别是的中点,点在上,是的角平分线,若,则的度数是( )
A.B.C.D.
7、(4分)下列各式:中,是分式的有( )
A.1个B.2个C.3个D.4个
8、(4分)已知,如图,,,,的垂直平分交于点,则的长为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)三角形的两边长分别为3和6,第三边的长是方程-6x+8=0的解,则此三角形的第三边长是_____
10、(4分)一次函数y=-3x+a的图像与两坐标轴所围成的三角形面积是6,则a的值为_________.
11、(4分)如图,将矩形绕点顺时针旋转度,得到矩形.若,则此时的值是_____.
12、(4分)已知,则__________.
13、(4分)对于一次函数,若,那么对应的函数值y1与y2的大小关系是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)阅读下列材料:已知实数m,n满足(2m2+n2+1)(2m2+n2﹣1)=80,试求2m2+n2的值
解:设2m2+n2=t,则原方程变为(t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,∴t=±1因为2m2+n2≥0,所以2m2+n2=1.
上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.
根据以上阅读材料内容,解决下列问题,并写出解答过程.
已知实数x,y满足(4x2+4y2+3)(4x2+4y2﹣3)=27,求x2+y2的值.
15、(8分)如图,在平面直角坐标系中,函数的图象经过点和点.过点作轴,垂足为点,过点作轴,垂足为点,连结、、、.点的横坐标为.
(1)求的值.
(2)若的面积为.
①求点的坐标.
②在平面内存在点,使得以点、、、为顶点的四边形是平行四边形,直接写出
符合条件的所有点的坐标.
16、(8分)邻居张老汉养了一群鸡,现在要建一长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边(门除外)用竹篱笆围成,篱笆总长34米.请同学解决以下问题:
(1)若设鸡场的面积为y平方米,鸡场与墙平行的一边长为x米,请写出y与x之间的函数关系式,并写出x的取值范围;
(2)当鸡场的面积为160平方米时,鸡场的长与宽分别是多少米?
(3)鸡场的最大面积是多少?并求出此时鸡场的长与宽分别是多少米?
17、(10分)某校围绕“扫黑除恶”专项斗争进行了普法宣传,然后在各班级分别随机抽取了5名同学进行了测试.规定:95分或以上为优秀。其中八(1)班和八(2)班成绩如下:八(1)班:100,100,90,90,90;八(2)班:95,95,95,95,90;
(1)八(1)班和八(2)班的优秀率分别是多少?
(2)通过计算说明:哪个班成绩相对整齐?
(3)若该校共有1000名学生,则通过这两个班级的成绩分析:该校大约有多少学生达到优秀?
18、(10分)如图,已知直角梯形,,,过点作,垂足为点,,,点是边上的一动点,过作线段的垂直平分线,交于点,并交射线于点.
(1)如图1,当点与点重合时,求的长;
(2)设,,求与的函数关系式,并写出定义域;
(3)如图2,联结,当是等腰三角形时,求的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知点A在反比例函数y=(k≠0)的图象上,过点A作AM⊥x轴于点M,△AMO的面积为3,则k=_____.
20、(4分)甲、乙两车从地出发到地,甲车先行半小时后,乙车开始出发.甲车到达地后,立即掉头沿着原路以原速的倍返回(掉头的时间忽略不计),掉头1个小时后甲车发生故障便停下来,故障除排除后,甲车继续以加快后的速度向地行驶.两车之间的距离(千米)与甲车出发的时间(小时)之间的部分函数关系如图所示.在行驶过程中,甲车排除故障所需时间为______小时.
21、(4分)甲、乙两人进行跳高训练时,在相同条件下各跳5次的平均成绩相同.若=0.5,=0.4,则甲、乙两人的跳高成绩较为稳定的是______.
22、(4分)如图,在▱ABCD中,,在边AD上取点E,使,则等于______度.
23、(4分)一次函数y=kx+3的图象如图所示,则方程kx+3=0的解为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)以下是八(1)班学生身高的统计表和扇形统计图,请回答以下问题.
八(1)班学生身高统计表
(1)求出统计表和统计图缺的数据.
(2)八(1)班学生身高这组数据的中位数落在第几组?
(3)如果现在八(1)班学生的平均身高是1.63 ,已确定新学期班级转来两名新同学,新同学的身高分别是1.54 和1.77 ,那么这组新数据的中位数落在第几组?
25、(10分)随着生活水平的不断提高,越来越多的人选择到电影院观看电影,体验视觉盛宴,并且更多的人通过网上平台购票,既快捷又能享受更多优惠.某电影城2019年从网上购买张电影票的费用比现场购买张电影票的费用少元:从网上购买张电影票的费用和现场购买张电影票的费用共元.
(1)求该电影城2019年在网上购票和现场购票每张电影票的价格为多少元?
(2)2019年五一当天,该电影城按照2019年网上购票和现场购票的价格销售电影票,当天售出的总票数为张.五一假期过后,观影人数出现下降,于是电影城决定从5月5日开始调整票价:现场购票价格下调,网上购票价格不变,结果发现,现场购票每张电影票的价格每降低元,售出总票数就比五一当天增加张.经统计,5月5日售出的总票数中有的电影票通过网上售出,其余通过现场售出,且当天票房总收入为元,试求出5月5日当天现场购票每张电影票的价格为多少元?
26、(12分)矩形不一定具有的性质是( )
A.对角线互相平分B.对角线互相垂直
C.对角线相等D.是轴对称图形
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案.
【详解】
解:∵菱形的两条对角线的长分别是6和8,
∴这个菱形的面积是:×6×8=1.
故选:A.
此题考查了菱形的性质.菱形的面积等于对角线积的一半是解此题的关键.
2、C
【解析】
被开方数可以写成完全平方式,根据二次根式的性质,x<3去绝对值即可.
【详解】
解: ∵x<3, ∴3-x>0,
∴原式=.
故选C.
本题考查了二次根式的化简,注意二次根式的结果为非负数,解题的关键是要掌握二次根式的性质: .
3、B
【解析】
先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.
【详解】
解:将小明所在小组的5个同学的成绩重新排列为:86、88、90、95、97,
所以这组数据的中位数为90分,
故选:B.
本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
4、B
【解析】分析:根据一次函数的性质,通过判断k和b的符号来判断函数所过的象限及函数与x轴y轴的交点.
详解:在y=﹣2x+1中,∵k=﹣2<0,∴y随x的增大而减小;
∵b=1>0,∴函数与y轴相交于正半轴,∴可知函数过第一、二、四象限;
∵k=﹣2≠2,∴图象与直线y=2x相交,直线y=﹣2x向上平移1个单位,得到函数解析式为y=﹣2x+1.
故选B.
点睛:本题考查了一次函数的性质,知道系数和图形的关系式解题的关键.
5、B。
【解析】∵四边形ABCD是菱形,对角线AC=8cm,BD=6cm,∴AO=4cm,BO=3cm。,
在Rt△AOB中,,
∵BD×AC=AB×DH,∴DH=cm。
在Rt△DHB中,,AH=AB﹣BH=cm。
∵,∴GH=AH=cm。故选B。
考点:菱形的性质,勾股定理,锐角三角函数定义。
6、A
【解析】
由分别是的中点,可得DE//BC,利用平行线性质及角平分线性质进行计算即可.
【详解】
解:∵分别是的中点
∴DE//BC
∴∠AED=∠C=80°
∵是的角平分线
∴∠AED=∠DEF=80°
∵DE//BC
∴∠DEF+∠EFB=180°
∴=100°
故答案为:A.
本题考查了三角形中位线的性质、平行线的性质和角平分线的性质,掌握中位线的性质是解题的关键.
7、D
【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
【详解】
解:是分式,共4个
故选:D.
本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.
8、D
【解析】
根据中位线的性质得出,,然后根据勾股定理即可求出DE的长.
【详解】
垂直平分,
为中边上的中位线,
∴,
在中,
,
.
故选D.
本题考查了三角形的线段长问题,掌握中位线的性质、勾股定理是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
求出方程的解,有两种情况:x=2时,看看是否符合三角形三边关系定理;x=1时,看看是否符合三角形三边关系定理;求出即可.
【详解】
解:x2-6x+8=0,
(x-2)(x-1)=0,
x-2=0,x-1=0,
x1=2,x2=1,
当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,
当x=1时,符合三角形的三边关系定理,此三角形的第三边长是1,
故答案为:1.
本题考查三角形的三边关系定理和解一元二次方程等知识点,关键是掌握三角形的三边关系定理,三角形的两边之和大于第三边.
10、±6
【解析】
先根据坐标轴上点的坐标特征得到直线与坐标轴的交点坐标,再根据三角形面积公式得 ,然后解关于a的绝对值方程即可.
【详解】
解:当y=0时,y=-3x+a=0,解得x= ,则直线与x轴的交点坐标为(,0);
当x=0时,y=-3x+a=a,则直线与y轴的交点坐标为(0,a);
所以,解得:a=±6. 故选答案为:±6.
本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是( ,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.
11、60°或300°
【解析】
由“SAS”可证△DCG≌△ABG,可得CG=BG,由旋转的性质可得BG=BC,可得△BCG是等边三角形,即可求解.
【详解】
解:如图,连接,
∵四边形ABCD是矩形,
∴CD=AB,∠DAB=∠ADC=90°,
∵DG=AG,
∴∠ADG=∠DAG,
∴∠CDG=∠GAB,且CD=AB,DG=AG,
∴△DCG≌△ABG(SAS),
∴CG=BG,
∵将矩形ABCD绕点B顺时针旋转α度(0°<α<360°),得到矩形BEFG,
∴BC=BG,∠CBG=α,
∴BC=BG=CG,
∴△BCG是等边三角形,
∴∠CBG=α=60°,
同理当G点在AD的左侧时,
△BCG仍是等边三角形,
Α=300°
故答案为60°或300°.
本题考查了旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,证明△BCG是等边三角形是本题的关键.
12、1
【解析】
直接利用二次根式非负性得出a,b的值,进而得出答案.
【详解】
∵,
∴a=−1,b=1,
∴−1+1=1.
故答案为:1.
此题主要考查了非负数的性质,正确得出a,b的值是解题关键.
13、
【解析】
先根据一次函数判断出函数图象的增减性,再根据x1<x1进行判断即可.
【详解】
∵直线,k=-<0,
∴y随x的增大而减小,
又∵x1<x1,
∴y1>y1.
故答案为>.
本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
设t=x2+y2(t≥0),将原方程转化为(4t+3)(4t﹣3)=27,求出t的值,即可解答.
【详解】
解:设t=x2+y2(t≥0),则原方程转化为(4t+3)(4t﹣3)=27,
整理,得
16t2﹣1=27,
所以t2= .
∵t≥0,
∴t= .
∴x2+y2的值是.
此题考查换元法解一元二次方程,解题关键在于利用换元法解题.
15、(1)4;(2)①点的坐标为.②、、
【解析】
(1)利用待定系数法将A点代入,即可求函数解析式的k值;
(2)用三角形ABD的面积为4,列方程,即可求出a的值,可得点的坐标;
(3)E的位置分三种情况分析,由平行四边形对边平行的关系,用平移规律求对应点的坐标.
【详解】
(1)函数的图象经过点,
(2)①如图,设AC与BD交与M,
点的横坐标为,点在的图象上,
点的坐标为.
∵轴,轴,
,.
∵的面积为,
.
.
.
点的坐标为.
②∵C(1,0)
∴AC=4
当以ACZ作为平行四边形的边时,BE=AC=4
∴
∴
∴、
当AC作为平行四边形的对角线时,AC中点为
∴BE中点为(1,2)设E(x,y)
∵点的坐标为
则
解得:
∴
综上所述:在平面内存在点,使得以点、、、为顶点的四边形是平行四边形,符合条件的所有点的坐标为:、、
故答案为、、
本题考察了利用待定系数法求反比例函数,以及利用三角形面积列方程求点的坐标和平行四边形的平移规律求点的坐标,解题的关键是会利用待定系数法求解析式,会用平移来求点的坐标.
16、(1)y= -x2+18x(2
(1)用含x的式子表示鸡场与墙垂直的一边长,根据矩形面积公式即可写出函数关系式;
(2)根据(1)所得关系式,将y=2代入即可求解;
(3)求出函数的最大值,使得面积取最大值即可求解.
【详解】
解:(1)根据题意,鸡场与墙平行的一边长为x米,可得鸡场与墙垂直的一边长为米,即(18-)米,
可得y=x(18-)= -x2+18x(2
解得x1=1,x2=20(不合题意,舍去),所以x=1.
当x=1时,18-=2.
所以,鸡场的长与宽分别为1米、2米;
(3)对于y== -x2+18x,a= -<0,所以函数有最大值, 当x= -=18时,函数有最大值,最大值y=12
当x=18时,18-=3.
所以鸡场的最大面积为12平方米,此时鸡场的长与宽分别为18米、3米.
本题主要考查二次函数的应用,根据矩形面积公式得出函数解析式是根本,根据养鸡场的长不超过墙长取舍是关键.
17、(1)八(1)班的优秀率:,八(2)班的优秀率:;(2)八(2)班的成绩相对整齐;(3)600人.
【解析】
(1)用95分或以上的人数除以总人数即可分别求出八(1)班和八(2)班的优秀率;
(2)先分别求出八(1)班和八(2)班的平均数,再计算它们的方差,然后根据方差的定义,方差越小成绩越整齐得出答案;
(3)用该校学生总数乘以样本优秀率即可.
【详解】
解:(1)八(1)班的优秀率是:×100%=40%,八(2)班的优秀率是:×100%=80%;
(2)八(1)班的平均成绩是:(100+100+90+90+90)=94,
方差是: [2×(100−94)2+3×(90−94)2]=24;
八(2)班的平均成绩是:(95+95+95+95+90)=94,
方差是: [4×(95−94)2+(90−94)2]=4;
∵4<24,即八(2)班的方差<八(1)班的方差,
∴八(2)班的成绩相对整齐;
(3)1000×=600(人).
答:该校大约有600名学生达到优秀.
本题考查方差的定义:一般地设n个数据x1,x2,…,xn的平均数为,则方差S2=,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了利用样本估计总体.
18、(1)BC=5;(2);(3)的长为或3或.
【解析】
(1)根据垂直平分线性质可知,设,,在中用勾股定理求出,即可解答;
(2)联结,,在中,,在中,,消去二次项即可得到与的函数关系式;根据点是边上的一动点结合(1)即可得出的定义域;
(3)分三种情况讨论,分别画出图形,根据相等的边用勾股定理列方程求解即可.
【详解】
解:(1)∵梯形中,,,,
∴,
∵是线段的垂直平分线,
∴,
在中,,
又∵,,设,,
,
∴,
∴.
(2)联结,,
∵是线段的垂直平分线,
∴
∵,,
∴
在中,
在中,
∴
∴
(3)在中,,,
∴,
当是等腰三角形时
①∵
∴
∵
∴
∴
②
取中点,联结
∵为的中点
∴为梯形中位线
∴
∵
∴为中点,
∴此时与重合
∴
③
联结并延长交延长线于点
此时.
∴,,
∴,
∴在中,,
∵
∴解得,(不合题意含去)
∴综上所述,当是等腰三角形时,的长为或3或
本题综合考查了矩形的性质、勾股定理解三角形、等腰三角形性质和判定、全等三角形性质和判定,灵活运用勾股定理求线段长是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、±1.
【解析】
过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.
【详解】
解:因为△AOM的面积是3,
所以|k|=2×3=1.
所以k=±1.
故答案为:±1.
主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,这里体现了数形结合的思想,正确理解k的几何意义是关键.
20、
【解析】
画出符合题意的行程信息图,利用图中信息列方程组求出甲乙的速度,再构建方程解决问题即可.
【详解】
解:设去时甲的速度为km/h,乙的速度为km/h,
则有, 解得,
∴甲返回时的速度为km/h,
设甲修车的时间为小时,则有,
解得.
故答案为.
本题考查函数图象问题,解题的关键是读懂图象信息,还原行程信息图,灵活运用所学知识解决问题.
21、乙
【解析】
根据在平均成绩相同的情况下,方差越小,成绩越稳定即可得出结论.
【详解】
解:∵0.5>0.4
∴S甲2>S乙2,则成绩较稳定的同学是乙.
故答案为:乙.
此题考查的是利用方差做决策,掌握方差越小,数据越稳定是解决此题的关键.
22、1
【解析】
利用平行四边形对角相等和邻角互补先求出∠BCD和∠D,再利用等边对等角的性质解答.
【详解】
在平行四边形ABCD中,∠A=130°,
∴∠BCD=∠A=130°,∠D=180°-130°=50°,
∵DE=DC,
∴∠ECD=×(180°-50°)=1°,
∴∠ECB=130°-1°=1°.
故答案为1.
本题主要考查平行四边形对角相等和邻角互补的性质,熟练掌握性质是解题的关键.
23、x=-1
【解析】
观察图象,根据图象与x轴的交点解答即可.
【详解】
∵一次函数y=kx+1的图象与x轴的交点坐标是(-1,0),
∴kx+1=0的解是x= -1.
故答案为:x= -1.
本题考查了一次函数与一元一次方程,解题的关键是根据交点坐标得出kx+1=0.
二、解答题(本大题共3个小题,共30分)
24、(1)统计表中:第二组人数4人,第四组人数18人,扇形图中:第三组38%,第五组:16%;(2)第四组;(3)第四组.
【解析】
(1)用第一组的人数和除以对应的百分比求出总人数,再用总人数分别乘以第二、四组的百分比求得其人数,根据百分比的概念求出第三、五组的百分比可得答案;
(2)根据中位数的概念求解可得;
(3)根据中位数的概念求解可得.
【详解】
解:(1)第一组人数为1,占被调查的人数百分比为2%,
∴被调查的人数为1÷2%=50(人),
则第二组人数为50×8%=4,
第四组人数为50×36%=18(人),
第三组对应的百分比为×100%=38%,
第五组的百分比为×100%=16%;
(2)被调查的人数为50人,中位数是第25和26个数据平均数,而第一二三组数据有24个,∴第25和26个数都落在第四组,所以八(1)班学生身高这组数据的中位数落在第四组;
(3)新学期班级转来两名新同学,此时共有52名同学,1.54 在第五组,1.77 在第二组.而新数据的第一二三组数据有25个数据,第26、27个数据都落在第四组,新数据的中位数是第26、27个数据的平均数,
所以新数据的中位数落在第四组.
本题考查了扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.
25、(1)网上购票价格30元,现场购票价格50元;(2)5月5日当天现场购票每张电影票的价格为40元,见解析.
【解析】
(1)首先设网上每张电影票价格为元,现场每张电影票价格为元,然后根据题意,列出关系式,即可得解;
(2)首先设现场购票每张电影票的价格下降元,然后根据题意列出关系式,即可得解.
【详解】
(1)设网上每张电影票价格为元,现场每张电影票价格为元.
解得:
答:网上购票价格30元,现场购票价格50元.
(2)设现场购票每张电影票的价格下降元
解得(舍去),
答:5月5日当天现场购票每张电影票的价格为40元.
此题主要考查二元一次方程组、一元一次方程的实际应用,关键是根据题意列出关系式,即可解题.
26、B
【解析】
根据矩形的性质解答即可.
【详解】
解:∵矩形的对角线线段,四个角是直角,对角线互相平分,
∴选项A、C、D正确,
故选:B.
本题考查矩形的性质,解题的关键是记住矩形的性质:①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等; ⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.
题号
一
二
三
四
五
总分
得分
批阅人
组别
身高(单位:米)
人数
第一组
1.85以上
1
第二组
第三组
19
第四组
第五组
1.55以下
8
2024-2025学年吉林省长春市第三中学九上数学开学统考模拟试题【含答案】: 这是一份2024-2025学年吉林省长春市第三中学九上数学开学统考模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年吉林省吉林市吉化九中学九上数学开学联考模拟试题【含答案】: 这是一份2024-2025学年吉林省吉林市吉化九中学九上数学开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
吉林省农安县三岗中学2023-2024学年数学九上期末调研模拟试题含答案: 这是一份吉林省农安县三岗中学2023-2024学年数学九上期末调研模拟试题含答案,共7页。试卷主要包含了已知,下列事件中,属于必然事件的是,下列各式计算正确的是等内容,欢迎下载使用。