2024-2025学年吉林省长春市第二实验学校九年级数学第一学期开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知:1号探测气球从海拔5m处匀速上升,同时,2号探测气球从海拔15m处匀速上升,且两个气球都上升了1h.两个气球所在位置的海拔y(单位:m)与上升时间x(单位:min)之间的函数关系如图所示,根据图中的信息,下列说法:
①上升20min时,两个气球都位于海拔25m的高度;
②1号探测气球所在位置的海拔关于上升时间x的函数关系式是y=x+5(0≤x≤60);
③记两个气球的海拔高度差为m,则当0≤x≤50时,m的最大值为15m.
其中,说法正确的个数是( )
A.0B.1C.2D.3
2、(4分)一个直角三角形的两边长分别为5和12,则第三边的长为( )
A.13B.14C.D.13或
3、(4分)下列各曲线中,不表示y是x的函数的是
A.B.C.D.
4、(4分)在四边形中,若,则等于( )
A.B.C.D.
5、(4分)为了了解某校初三年级学生的运算能力,随机抽取了名学生进行测试,将所得成绩(单位:分)整理后,列出下表:
本次测试这名学生成绩良好(大于或等于分为良好)的人数是( )
A.B.C.D.
6、(4分)下列电视台的台标,是中心对称图形的是( )
A.B.C.D.
7、(4分)如图,在平面直角坐标系中,为,,与轴重合,反比例函数的图象经过中点与相交于点,点的横坐标为,则的长( )
A.B.C.D.
8、(4分)已知一次函数图像如图所示,点在图像上,则与的大小关系为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在重庆八中“青春飞扬”艺术节的钢琴演奏比赛决赛中,参加比赛的10名选手成绩统计如图所示,则这10名学生成绩的中位数是___________.
10、(4分)已知在等腰梯形中,,,对角线,垂足为,若,,梯形的高为______.
11、(4分)已知,在梯形中,,,,,那么下底的长为__________.
12、(4分)函数中,自变量x的取值范围是_____.
13、(4分)已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,则k=_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)在的方格纸中,四边形的顶点都在格点上.
(1)计算图中四边形的面积;
(2)利用格点画线段,使点在格点上,且交于点,计算的长度.
15、(8分)如图,在平面直角坐标系中,一次函数的图象经过点A(6,﹣3)和点B(﹣2,5).
(1)求这个一次函数的表达式.
(2)求该函数图象与坐标轴围成的三角形的面积.
(3)判断点C(2,2)是在直线AB的上方(右边)还是下方(左边).
16、(8分)如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.
17、(10分)如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为48°,测得底部处的俯角为58°,求乙建筑物的高度.(参考数据:,,,.结果取整数)
18、(10分)如图,菱形的对角线和交于点,,,求和的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)八年级(3班)同学要在广场上布置一个矩形花坛,计划用鲜花摆成两条对角线.如果一条对角线用了20盆红花,还需要从花房运来_______盆红花.如果一条对角线用了25盆红花,还需要从花房运来_______盆红花.
20、(4分)若分式方程 无解,则等于___________
21、(4分)对于反比例函数,当时,的取值范围是__________.
22、(4分)求值:=____.
23、(4分)如图,直线y=kx+6与x轴、y轴分别交于点E、F.点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).若点P(x,y)是第二象限内的直线上的一个动点.当点P运动到_____(填P点的坐标)的位置时,△OPA的面积为1.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.
(1)求一次函数解析式;
(2)求C点的坐标;
(3)求△AOD的面积.
25、(10分)为了庆祝新中国成立70周年,某校组织八年级全体学生参加“恰同学少年,忆峥嵘岁月”新中国成立70周年知识竞赛活动.将随机抽取的部分学生成绩进行整理后分成5组,50~60分()的小组称为“学童”组,60~70分()的小组称为“秀才”组,70~80分()的小组称为“举人”组,80~90分()的小组称为“进士”组,90~100分()的小组称为“翰林”组,并绘制了不完整的频数分布直方图如下,请结合提供的信息解答下列问题:
(1)若“翰林”组成绩的频率是12.5%,请补全频数分布直方图;
(2)在此次比赛中,抽取学生的成绩的中位数在 组;
(3)学校决定对成绩在70~100分()的学生进行奖励,若八年级共有336名学生,请通过计算说明,大约有多少名学生获奖?
26、(12分)已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0
(1)求证:无论k取何值,这个方程总有实数根;
(2)若等腰三角形ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求△ABC的周长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据一次函数的图象和性质,由两点坐标分别求出1、2号探测球所在位置的海拔y关于上升时间x的函数关系式,结合图象即可判定结论是否正确.
【详解】
从图象可知,上升20min时,两个气球都位于海拔25m的高度,故①正确;
1号探测气球的图象过 设=kx+b,代入点坐标可求得关系式是=x+5(0≤x≤60),同理可求出,2号球的函数解析式为,故②正确;
利用图象可以看出,20min后,1号探测气球的图象始终在2号探测气球的图象的上方,而且都随着x的增大而增大,所以当x=50时,两个气球的海拔高度差m有最大值,此时m=,代入x=50,得m=15,故③正确.
考查了一次函数的图象和性质,一次函数解析式的求法,图象增减性的综合应用,熟记图象和性质特征是解题的关键.
2、D
【解析】
本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边12既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即12是斜边或直角边的两种情况,然后利用勾股定理求解.
【详解】
当12和5均为直角边时,第三边==13;
当12为斜边,5为直角边,则第三边==,
故第三边的长为13或.
故选D.
本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
3、C
【解析】
设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.根据函数的意义即可求出答案.
【详解】
显然A、B、D选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;
C选项对于x取值时,y都有2个值与之相对应,则y不是x的函数;
故选:C.
本题主要考查了函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.
4、B
【解析】
如图,连接BD.利用三角形法则解题即可.
【详解】
如图,连接BD.
∵,
∴.
又,
∴,即.
故选B.
考查了平面向量,属于基础题,熟记三角形法则即可解题,解题时,注意转化思想的应用.
5、D
【解析】
先根据表格得到成绩良好的频率,再用100×频率即可得解.
【详解】
解:由题意可知成绩良好的频率为0.3+0.4=0.7,
则这名学生成绩良好的人数是100×0.7=70(人).
故选D.
本题主要考查频率与频数,解此题的关键在于熟练掌握其知识点,在题中准确找到需要的信息.
6、D
【解析】
根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合,因此,四个选项中只有D符合。故选D。
7、B
【解析】
把E点的横坐标代入,确定E的坐标,根据题意得到B的坐标为(2,4),把B的横坐标代入求得D的纵坐标,就可求得AD,进而求得BD.
【详解】
解:反比例函数的图象经过OB中点E,E点的横坐标为1,
,
∴E(1,2),
∴B(2,4),
∵△OAB为Rt△,∠OAB=90°,
∴AB=4,
把x=2代入得,
∴AD=1,
∴BD=AB-AD=4-1=3,
故选:B.
此题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、三角形中位线性质,解题的关键是求得B、D的纵坐标.
8、A
【解析】
根据图像y随x增大而减小,比较横坐标的大小,再判断纵坐标的大小.
【详解】
根据图像y随x增大而减小
1<3
故选A
本题考查一次函数图像上的坐标特征,解题关键在于判断y与x的关系.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、8.5
【解析】
根据图形,这10个学生的分数为:7,7.5,8,8,8.5,8.5,9,9,9,9.5,则中位数为8.5.
故答案:8.5.
10、
【解析】
过作交的延长线于,构造.首先求出是等腰直角三角形,从而推出与的关系.
【详解】
解:如图:过作交的延长线于,过作于.
,,
四边形是平行四边形,
,,
等腰梯形中,,
,
,,
,
是等腰直角三角形,
,
又,
,
即梯形的高为.
故答案为:.
本题考查了等腰梯形性质,作对角线的平行线将上下底和对角线移到同一个三角形中是解题的关键,也是梯形辅助线常见作法.
11、11
【解析】
首先过A作AE∥DC交BC与E,可以证明四边形ADCE是平行四边形,得CE=AD=4,再证明△ABE是等边三角形,进而得到BE=AB=6,从而得到答案.
【详解】
解:如图,过A作AE∥DC交BC与E,
∵AD∥BC,
∴四边形AECD是平行四边形,
∴AD=EC=5,AE=CD,
∵AB=CD=6,
∴AE=AB=6,
∵∠B=60°,
∴△ABE是等边三角形,
∴BE=AB=6,
∴BC=6+5=11,
故答案为11.
此题主要考查了梯形,关键是掌握梯形中的重要辅助线,过一个顶点作一腰的平行线得到一个平行四边形.
12、x≠1
【解析】
根据分母不等于0,可以求出x的范围;
【详解】
解:(1)x-1≠0,解得:x≠1;
故答案是:x≠1,
考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
13、-5
【解析】
根据“点P(1,2)关于x轴的对称点为P′”求出点P′的坐标,再将其代入y=kx+3,即可求出答案.
【详解】
∵点P(1,2)关于x轴的对称点为P′
∴点P′坐标为(1,-2)
又∵点P′在直线y=kx+3上
∴-2=k+3
解得k=-5,
故答案为-5.
本题考查的是坐标对称的特点与一次函数的知识,能够求出点P′坐标是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)
【解析】
(1)先证明是直角三角形,然后将四边形分为可得出四边形的面积;
(2)根据格点和勾股定理先作出图形,然后由面积法可求出DF的值。
【详解】
解:(1)由图可得
是直角三角形
(2)如图,即为所求作的线段
又,且,
本题考查了勾股定理及其逆定理的应用,考查了复杂作图-作垂线,要求能灵活运用公式求面积和已经面积求高。
15、 (1) y=﹣x+3;(2);(3) 在直线AB的上方.
【解析】
(1)设一次函数解析式为y=kx+b,把A、B两点坐标分别代入利用待定系数法进行求解即可得;
(2)由(1)中的解析式求得直线与x轴、y轴的交点坐标,利用三角形公式进行计算即可得;
(3)把x=2代入解析式,通过计算进行判断即可得.
【详解】
(1)设一次函数解析式为y=kx+b,
把A(6,﹣3)与B(﹣2,5)代入得:,
解得:,
则一次函数解析式为y=﹣x+3;
(2)在y=﹣x+3中,令x=0,则有y=3,
令y=0,则有-x+3=0,x=3,
所以函数y=﹣x+3图象与坐标轴的交点坐标分别为(0,3)和(3,0),
所以图象与坐标轴围成的三角形的面积是;
(3)当x=2时,y=﹣2+3=1,所以点(2,2)在直线AB的上方.
本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征、一次函数图象与坐标轴围成的三角形面积等,熟练掌握待定系数法是解题的关键.
16、证明见解析.
【解析】
【分析】根据平行四边形的性质以及全等三角形的判定方法证明出△DOE≌△BOF,得到OE=OF,利用对角线互相平分的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用对角线互相垂直的平行四边形是菱形得出四边形BFDE为菱形.
【详解】∵在▱ABCD中,O为对角线BD的中点,
∴BO=DO,∠EDB=∠FBO,
在△EOD和△FOB中,
,
∴△DOE≌△BOF(ASA),
∴OE=OF,
又∵OB=OD,
∴四边形EBFD是平行四边形,
∵EF⊥BD,
∴四边形BFDE为菱形.
【点睛】本题考查了菱形的判定,平行四边形的性质以及全等三角形的判定与性质等知识,得出OE=OF是解题关键.
17、38m.
【解析】
作AE⊥CD交CD的延长线于点E,根据正切的定义分别求出CE、DE,结合图形计算即可.
【详解】
如图,作AE⊥CD交CD的延长线于点E,则四边形ABCE是矩形,
∴AE=BC=78m,
在Rt△ACE中,tan∠CAE=,
∴CE=AE⋅tan58°≈78×1.60=124.8(m)
在Rt△ADE中,tan∠DAE=,
∴DE=AE⋅tan48°≈78×1.11=86.58(m)
∴CD=CE−DE=124.8−86.58≈38(m)
答:乙建筑物的高度CD约为38m.
此题考查解直角三角形,三角函数,解题关键在于作辅助线和掌握三角函数定义.
18、
【解析】
依据菱形的性质可得Rt△ABO中∠ABO=30°,则可得AO和BO长,根据AC=2AO和BD=2BO可得结果.
【详解】
解:菱形中,,
又,
所以,三角形为等边三角形,
所以,;
,
本题主要考查了菱形的性质,解决菱形中线段的长度问题一般转化为在直角三角形中利用勾股定理求解.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、20 1
【解析】
根据矩形的对角线相等且互相平分,即可得出结果.
【详解】
解:如果一条对角线用了20盆红花,还需要从花房运来20盆红花;理由如下:
∵矩形的对角线互相平分且相等,
∴一条对角线用了20盆红花,
∴还需要从花房运来红花20盆;
如果一条对角线用了25盆红花,还需要从花房运来1盆红花;理由如下:
一条对角线用了25盆红花,中间一盆为对角线交点,25-1=1,
∴还需要从花房运来红花1盆,
故答案为:20,1.
本题考查矩形的性质,解题关键是熟练掌握矩形的对角线互相平分且相等的性质.
20、
【解析】
先去分母,把分式方程的增根代入去分母后的整式方程即可得到答案.
【详解】
解:,
去分母得:,
所以:,
因为:方程的增根是,
所以:此时,
故答案为:.
本题考查分式方程无解时字母系数的取值,掌握把增根代入去分母后的整式方程是解题关键.
21、﹣3<y<1
【解析】
先求出x=﹣1时的函数值,再根据反比例函数的性质求解.
【详解】
解:当x=﹣1时,
,
∵k=3>1,
∴图象分布在一、三象限,在各个象限内,y随x的增大而减小,
∴当x<1时,y随x的增大而减小,且y<1,
∴y的取值范围是﹣3<y<1.
故答案为:﹣3<y<1.
本题主要考查反比例函数的性质.对于反比例函数(k≠1),当k>1时,在各个象限内,y随x的增大而减小;当k<1时,在各个象限内,y随x的增大而增大.
22、.
【解析】
根据二次根式的性质,求出算术平方根即可.
【详解】
解:原式=.
故答案为:.
此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.
23、(﹣4,3).
【解析】
求出直线EF的解析式,由三角形的面积公式构建方程即可解决问题.
【详解】
解:∵点E(﹣8,0)在直线y=kx+6上,
∴﹣8k+6=0,
∴k=,
∴y=x+6,
∴P(x, x+6),
由题意:×6×(x+6)=1,
∴x=﹣4,
∴P(﹣4,3),
故答案为(﹣4,3).
本题考查一次函数图象上的点的坐标特征,三角形的面积等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.
二、解答题(本大题共3个小题,共30分)
24、(1)y=x+1;(2)C(0,1);(3)1
【解析】
试题分析:(1)首先根据正比例函数解析式求得m的值,再进一步运用待定系数法求得一次函数的解析式;
(2)根据(1)中的解析式,令x=0求得点C的坐标;
(3)根据(1)中的解析式,令y=0求得点D的坐标,从而求得三角形的面积.
试题解析:
(1)∵正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),
∴2m=2,
m=1.
把(1,2)和(-2,-1)代入y=kx+b,得
解得:
则一次函数解析式是y=x+1;
(2)令x=0,则y=1,即点C(0,1);
(3)令y=0,则x=-1.
则△AOD的面积=.
【点睛】运用了待定系数法求函数解析式、直线与坐标轴的交点的求法.
25、(1)详见解析;(2)70~80或“举人”;(3)231.
【解析】
(1)先根据90~100分的人数及其所占百分比求得总人数,再由各组人数之和等于总人数求得60~70分的人数.从而补全图形;
(2)根据中位数的定义求解可得;
(3)利用样本估计总体的思想求解可得.
【详解】
解:(1)∵被调查的总人数为6÷12.5%=48(人),
∴60~70分的人数为48-(3+18+9+6)=12(人),
补全频数分布直方图如下:
(2)因为中位数是第24、25个数据的平均数,而第24、25个数据都落在70~80分这一组,
所以在此次比赛中,抽取学生的成绩的中位数在70~80或“举人”组,
故答案为70~80或“举人”;
(3).
答:大约有231名学生获奖.
故答案为(1)详见解析;(2)70~80或“举人”;(3)231.
本题考查频数分布表、频数分布直方图,解题的关键是明确题意,找出所求问题需要的条件,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
26、(1)证明见解析;(2)2.
【解析】
试题分析:(1)先把方程化为一般式:x2﹣(2k+1)x+4k﹣2=0,要证明无论k取任何实数,方程总有两实数根,即要证明△≥0;
(2)先利用因式分解法求出两根:x1=2,x2=2k﹣1.先分类讨论:若a=4为底边;若a=4为腰,分别确定b,c的值,求出三角形的周长.
试题解析:(1)证明:方程化为一般形式为:x2﹣(2k+1)x+4k﹣2=0,
∵△=(2k+1)2﹣4(4k﹣2)=(2k﹣3)2,
而(2k﹣3)2≥0,
∴△≥0,
所以无论k取任何实数,方程总有两个实数根;
(2)解:x2﹣(2k+1)x+4k﹣2=0,
整理得(x﹣2)[x﹣(2k﹣1)]=0,
∴x1=2,x2=2k﹣1,
当a=4为等腰△ABC的底边,则有b=c,
因为b、c恰是这个方程的两根,则2=2k﹣1,
解得k=,则三角形的三边长分别为:2,2,4,
∵2+2=4,这不满足三角形三边的关系,舍去;
当a=4为等腰△ABC的腰,
因为b、c恰是这个方程的两根,所以只能2k﹣1=4,
则三角形三边长分别为:2,4,4,
此时三角形的周长为2+4+4=2.
所以△ABC的周长为2.
题号
一
二
三
四
五
总分
得分
分组
频率
2024-2025学年湖南省湘潭市数学九年级第一学期开学统考模拟试题【含答案】: 这是一份2024-2025学年湖南省湘潭市数学九年级第一学期开学统考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年黑龙江省讷河市实验学校数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年黑龙江省讷河市实验学校数学九上开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年贵州铜仁伟才学校九年级数学第一学期开学统考模拟试题【含答案】: 这是一份2024-2025学年贵州铜仁伟才学校九年级数学第一学期开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。