2024-2025学年湖南省长沙市湖南师大附中高新实验中学数学九上开学综合测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为( )
A.15B.18C.21D.24
2、(4分)若一个正多边形的一个外角是45°,则这个正多边形的边数是( )
A.10B.9C.8D.6
3、(4分)一个直角三角形的两边长分别为5和12,则第三边的长为( )
A.13B.14C.D.13或
4、(4分)正方形具有而菱形不一定具有的性质是 ( )
A.对角线相等B.对角线互相垂直平分
C.四条边相等D.对角线平分一组对角
5、(4分)一次函数的图象如图所示,将直线向下平移若干个单位后得直线,的函数表达式为.下列说法中错误的是( )
A.B.C.D.当时,
6、(4分)如图,在平面直角坐标系xOy中,点A(0,2),B(4,0),点N为线段AB的中点,则点N的坐标为( )
A.(1,2)B.(4,2)C.(2,4)D.(2,1)
7、(4分)刘主任乘公共汽车从昆明到相距千米的晋宁区办事,然后乘出租车返回,出租车的平均速度比公共汽车快千米/时,回来时路上所花时间比去时节省了小时,设公共汽车的平均速度为千米时,则下面列出的方程中正确的是( )
A.B.
C.D.
8、(4分)如图,在中,,,分别为,,边的中点,于,,则等于( )
A.32B.16C.8D.10
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图.△ABC中,AC的垂直平分线分别交AC、AB于点D.F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是_____
10、(4分)已知菱形两条对角线的长分别为4和6,则菱形的边长为______.
11、(4分)如图,在△ABC中,AB=5,AC=7,BC=10,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,则PQ的长______.
12、(4分)在 中,若是 的正比例函数,则常数 _____.
13、(4分)关于x的一元二次方程x2﹣2x+k﹣1=0没有实数根,则k的取值范围是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)解方程
;
.
15、(8分)某市现在有两种用电收费方法:
小明家所在的小区用的电表都换成了分时电表.
解决问题:
(1)小明家庭某月用电总量为千瓦·时(为常数);谷时用电千瓦·时,峰时用电千瓦·时,分时计价时总价为元,普通计价时总价为元,求,与用电量的函数关系式.
(2)小明家庭使用分时电表是不是一定比普通电表合算呢?
(3)下表是路皓家最近两个月用电的收据:
根据上表,请问用分时电表是否合算?
16、(8分)已知,如图,,求证:.
证明:∵
∴________________( )
∴________________( )
又∵
∴________________( )
∴( )
17、(10分)在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(﹣2,2),现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.
(1)请画出平移后的△A′B′C′(不写画法);
(2)并直接写出点B′、C′的坐标:B′( )、C′( );
(3)若△ABC内部一点P的坐标为(a,b),则点P的对应点P′的坐标是( ).
18、(10分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE
(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)将一个矩形纸片沿折叠成如图所示的图形,若,则的度数为________.
20、(4分)如图,▱ABCD的对角线交于点O,且AB=5,△OCD的周长为16,则▱ABCD的两条对角线的和是______
21、(4分)如图,一次函数的图象与坐标轴的交点坐标分别为A(0,2),B(-3,0),下列说法:①随的增大而减小;②;③关于的方程的解为;④关于的不等式的解集.其中说法正确的有_____.
22、(4分)在平行四边形ABCD中,若∠A=70°,则∠C的度数为_________.
23、(4分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为______度.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,点在上,,,,,求的长.
25、(10分)已知一个多边形的内角和比其外角和的2倍多180°,求这个多边形的边数及对角线的条数?
26、(12分)计算题
(1)
(2)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
此题涉及的知识点是平行四边形的性质.根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是△BCD的中位线,可得OE=BC,所以易求△DOE的周长.
【详解】
解:∵▱ABCD的周长为32,
∴2(BC+CD)=32,则BC+CD=1.
∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,
∴OD=OB=BD=2.
又∵点E是CD的中点,DE=CD,
∴OE是△BCD的中位线,∴OE=BC,
∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=2+9=3,
即△DOE的周长为3.
故选A
此题重点考察学生对于平行四边形的性质的理解,三角形的中位线,平行四边形的对角对边性质是解题的关键.
2、C
【解析】
试题分析:∵多边形外角和="360°,"
∴这个正多边形的边数是360°÷45°="1."
故选C.
考点:多边形内角与外角.
3、D
【解析】
本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边12既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即12是斜边或直角边的两种情况,然后利用勾股定理求解.
【详解】
当12和5均为直角边时,第三边==13;
当12为斜边,5为直角边,则第三边==,
故第三边的长为13或.
故选D.
本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
4、A
【解析】
根据正方形和菱形的性质可以判断各个选项是否正确.
【详解】
解:正方形的对角线相等,菱形的对角线不相等,故A符合题意;
正方形和菱形的对角线都互相垂直平分,故B不符合题意;
正方形和菱形的四条边都相等,故C不符合题意;
正方形和菱形的对角线都平分一组对角,故D不符合题意,
故选:A.
本题考查正方形和菱形的性质,解答本题的关键是熟练掌握基本性质.
5、B
【解析】
根据两函数图象平行k相同,以及平移规律“左加右减,上加下减”即可判断
【详解】
∵将直线向下平移若干个单位后得直线,
∴直线∥直线,
∴,
∵直线向下平移若干个单位后得直线,
∴,
∴当时,
故选B.
本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.
6、D
【解析】
根据三角形的中位线的性质和点的坐标,解答即可.
【详解】
过N作NE⊥y轴,NF⊥x轴,
∴NE∥x轴,NF∥y轴,
∵点A(0,2),B(4,0),点N为线段AB的中点,
∴NE=2,NF=1,
∴点N的坐标为(2,1),
故选:D.
本题主要考查坐标与图形的性质,掌握三角形的中位线的性质和点的坐标的定义,是解题的关键.
7、C
【解析】
设公共汽车的平均速度为千米时,则出租车的平均速度为千米时,
根据时间关系可得出方程.
【详解】
解:设公共汽车的平均速度为千米时,则出租车的平均速度为千米时,
根据题意得出:.
故选:C.
考核知识点:列分式方程.理解时间关系是关键.
8、B
【解析】
利用三角形中位线定理知DF=AC;然后在直角三角形AHC中根据“直角三角形斜边上的中线等于斜边的一半”即可将所求线段EH与已知线段DF联系起来了.
【详解】
解:∵D、F分别是AB、BC的中点,
∴DF是△ABC的中位线,
∴DF=AC(三角形中位线定理);
又∵E是线段AC的中点,AH⊥BC,
∴EH=AC,
∴EH=DF=1.
故选B.
本题综合考查了三角形中位线定理、直角三角形斜边上的中线.三角形的中位线平行于第三边且等于第三边的一半.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
由AF=BF得到F为AB的中点,又DF垂直平分AC,得到D为AC的中点,可得出DF为三角形ABC的中位线,根据三角形中位线定理得到DF平行于CB,且DF等于BC的一半,由BC的长求出DF的长,由两直线平行同旁内角互补得到∠C=90°,同时由DE与EB垂直,ED与DC垂直,根据垂直的定义得到两个角都为直角,利用三个角为直角的四边形为矩形得到四边形BCDE为矩形,在直角三角形ADF中,利用锐角三角函数定义及特殊角的三角函数值,由∠A=30°,DF的长,求出AD的长,即为DC的长,由矩形的长BC于宽CD的乘积即可求出矩形BCED的面积.
【详解】
∵AF=BF,即F为AB的中点,又DE垂直平分AC,即D为AC的中点,
∴DF为三角形ABC的中位线,
∴DE∥BC,DF=BC,
又∠ADF=90°,
∴∠C=∠ADF=90°,
又BE⊥DE,DE⊥AC,
∴∠CDE=∠E=90°,
∴四边形BCDE为矩形,
∵BC=2,∴DF= BC=1,
在Rt△ADF中,∠A=30°,DF=1,
∴tan30°= ,即AD= ,
∴CD=AD=,
则矩形BCDE的面积S=CD⋅BC=2.
故答案为2
此题考查矩形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质,含30度角的直角三角形,解题关键在于求出四边形BCDE为矩形
10、
【解析】
根据菱形的性质及勾股定理即可求得菱形的边长.
【详解】
解:因为菱形的对角线互相垂直平分,
所以对角线的一半为2和3,
根据勾股定理可得菱形的边长为
故答案为:.
此题主要考查菱形的基本性质:菱形的对角线互相垂直平分,综合利用了勾股定理的内容.
11、1
【解析】
证明△ABQ≌△EBQ,根据全等三角形的性质得到BE=AB=5,AQ=QE,根据三角形中位线定理计算即可.
【详解】
解:在△ABQ和△EBQ中,
,
∴△ABQ≌△EBQ(ASA),
∴BE=AB=5,AQ=QE,
同理CD=AC=7,AP=PD,
∴DE=CD-CE=CD-(BC-BE)=2,
∵AP=PD,AQ=QE,
∴PQ=DE=1,
故答案为:1.
本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
12、2
【解析】
试题分析:本题主要考查的就是正比例函数的定义,一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,由此可得a﹣2=0,解出即可.
考点:正比例函数的定义.
13、k>1
【解析】
∵关于x的一元二次方程x1﹣1x+k﹣1=0没有实数根,
∴△<0,即(﹣1)1﹣4(k﹣1)<0,
解得k>1,
故答案为k>1.
三、解答题(本大题共5个小题,共48分)
14、(1),;(2),.
【解析】
根据解一元二次方程的方法因式分解法解方程即可.
【详解】
解:因式分解得,
或,
,;
,
,
或,
,.
本题考查了解一元二次方程因式分解法,熟练掌握因式分解法是解题的关键.
15、(1)y1=0.35x+0.55(a-x),y2=0.52a;(2)当x>时,使用分时电表比普通电表合算;当x=时,两种电表费用相同;当x<时,使用普通电表比普通电表合算;(3)用分时电表更合算.
【解析】
(1)根据题意解答即可;
(2)根据题意列不等式解答即可;
(3)根据(1)的结论解答即可.
【详解】
解:(1)根据题意得:y1=0.35x+0.55(a-x),y2=0.52a;
(2)小明家庭使用分时电表不一定比普通电表合算.
当y1<y2,即0.35x+0.55(a-x)<0.52a,解得x>,
即x>时,使用分时电表比普通电表合算;
当y1=y2,即0.35x+0.55(a-x)=0.52a,解得x=,
即x=时,两种电表费用相同;
当y1>y2,即0.35x+0.55(a-x)>0.52a,解得x<,
即x<时,使用普通电表比普通电表合算;
(3)用分时电表的费用为:0.35×181+0.55×239=194.8(元);
使用普通电表的费用为:0.52×(181+239)=218.4(元).
所以用分时电表更合算.
本题主要考查了一次函数与一元一次不等式的运用,解答时求出一次函数的解析式是关键.
16、DE∥AC;内错角相等,两直线平行;;两直线平行,内错角相等 ;;两直线平行,同位角相等.
【解析】
根据平行线的性质和判定,还有等量代换可得.
【详解】
证明:∵
∴___DE∥AC_____( 内错角相等,两直线平行 )
∴________________( 两直线平行,内错角相等 )
又∵
∴________________( 两直线平行,同位角相等)
∴(等量代换)
考核知识点:平行线的判定和性质.理解好判定和性质是关键.
17、(1)答案见解析;(2)B′(﹣4,1)、C′(﹣1,﹣1);(3)(a﹣5,b﹣2).
【解析】
(1)根据网格结构找出点B、C平移后的位置,然后顺次连接即可;
(2)根据平面直角坐标系写出点B′、C′的坐标即可;
(3)根据平移规律写出即可.
【详解】
解:(1)△A′B′C′如图所示;
(2)B′(﹣4,1)、C′(﹣1,﹣1);
(3)∵点A(3,4)、A′(﹣2,2),
∴平移规律为向左平移5个单位,向下平移2个单位,
∴P(a,b)平移后的对应点P′的坐标是(a﹣5,b﹣2).
故答案为B′(﹣4,1)、C′(﹣1,﹣1);(a﹣5,b﹣2).
本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
18、(1)证明见解析;(2)1.
【解析】
分析:(1)只要证明三个角是直角即可解决问题;
(2)作OF⊥BC于F.求出EC、OF的长即可;
详解:(1)证明:∵AD∥BC,
∴∠ABC+∠BAD=180°,
∵∠ABC=90°,
∴∠BAD=90°,
∴∠BAD=∠ABC=∠ADC=90°,
∴四边形ABCD是矩形.
(2)作OF⊥BC于F.
∵四边形ABCD是矩形,
∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,
∴AO=BO=CO=DO,
∴BF=FC,
∴OF=CD=1,
∵DE平分∠ADC,∠ADC=90°,
∴∠EDC=45°,
在Rt△EDC中,EC=CD=2,
∴△OEC的面积=•EC•OF=1.
点睛:本题考查矩形的判定和性质、角平分线的定义、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题
一、填空题(本大题共5个小题,每小题4分,共20分)
19、126°
【解析】
直接利用翻折变换的性质以及平行线的性质分析得出答案.
【详解】
解:如图,由题意可得:
∠ABC=∠BCE=∠BCA=27°,
则∠ACD=180°-27°-27°=126°.
故答案为:126°.
本题主要考查了翻折变换的性质以及平行线的性质,正确应用相关性质是解题关键.
20、1
【解析】
根据平行四边形对角线互相平分,对边相等可得CD=AB=5,AC=2CO,BD=2DO,再由△OCD的周长为16可得CO+DO=16﹣5=11,然后可得答案.
【详解】
解:∵四边形ABCD是平行四边形,
∴CD=AB=5,AC=2CO,BD=2DO,
∵△OCD的周长为16,
∴CO+DO=16﹣5=11,
∴AC+BD=2×11=1,
故答案为1.
此题主要考查了平行四边形的性质,关键是掌握平行四边形对角线互相平分,对边相等.
21、②④
【解析】
根据一次函数的性质,一次函数与一元一次方程的关系,一次函数与一元一次不等式的关系对个小题分析判断即可得解.
【详解】
解:根据一次函数的图象可知y随x的增大而增大,故①错误;
因为一次函数的图象与y轴的交点A(0,2),所以b=2,故②正确;
因为一次函数的图象与x轴的交点B(-3,0),所以关于的方程的解为,故③错误;
因为一次函数的图象与x轴的交点B(-3,0)结合图象可知关于的不等式的解集,故④正确;
故答案为:②④.
本题考查一次函数与坐标轴交点问题,一次函数与一元一次方程的关系,一次函数与一元一次不等式的关系.掌握数形结合思想是解决此题的关键.
22、70°
【解析】
在平行四边形ABCD中,∠C=∠A,则求出∠A即可.
【详解】
根据题意在平行四边形ABCD中,根据对角相等的性质得出∠C=∠A,
∵∠A=70°,
∴∠C=70°.
故答案为:70°.
此题考查平行四边形的性质,解题关键在于利用平行四边形的性质解答.
23、1
【解析】
根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.
【详解】
解:∵△ABC中,AB=AC,
∴∠B=∠C,
∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,
∴∠A:∠B=1:2,
即5∠A=180°,
∴∠A=1°,
故答案为1.
本题考查了三角形内角和定理与等腰三角形的性质,解题的关键是能根据等腰三角形性质、三角形内角和定理与已知条件得出5∠A=180°.
二、解答题(本大题共3个小题,共30分)
24、.
【解析】
首先证明,得到,设,于是得到,.在中,利用勾股定理可得结果.
【详解】
解:∵
∴∴∠ACE+∠BCF=∠CAE+∠ACE=90°,
∴∠CAE=∠FBC,
∴.
设.
∴.
∴,.
在中,可得.
解得,,(舍)
所以的长为.
本题考查相似三角形的判定与性质、勾股定理.利用三角形相似求出相似比是解决问题的关键.
25、所求的多边形的边数为7,这个多边形对角线为14条.
【解析】
设这个多边形的边数为n,根据多边形的内角和是(n-2)•180°,外角和是360°,列出方程,求出n的值,再根据对角线的计算公式即可得出答案.
【详解】
设这个多边形的边数为n,根据题意,得:
(n﹣2)×180°=360°×2+180°,
解得 n=7,
则这个多边形的边数是7,
七边形的对角线条数为:×7×(7﹣3)=14(条),
答:所求的多边形的边数为7,这个多边形对角线为14条.
本题考查了对多边形内角和定理和外角和的应用,注意:边数是n的多边形的内角和是(n-2)•180°,外角和是360°.
26、(1)(2)12
【解析】
(1)先把二次根式化为最简二次根式,然后合并即可;
(2)利用完全平方公式和平方差公式计算.
【详解】
(1)原式=
=;
(2)原式=6-12+12-(20-2)
=-12.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
题号
一
二
三
四
五
总分
得分
分时电表
普通电表
峰时(8:00~21:00)
谷时(21:00到次日8:00)
电价0.55元/千瓦·时
电价0.35元/千瓦·时
电价0.52元/千瓦·时
谷时用电(千瓦·时)
峰时用电(千瓦·时)
181
239
2024-2025学年湖南省涟源市六亩塘中学数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年湖南省涟源市六亩塘中学数学九上开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖南省广益实验中学九上数学开学考试试题【含答案】: 这是一份2024-2025学年湖南省广益实验中学九上数学开学考试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖南省凤凰皇仓中学数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年湖南省凤凰皇仓中学数学九上开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。