|试卷下载
搜索
    上传资料 赚现金
    2024-2025学年湖南省长沙市芙蓉区第十六中学数学九上开学监测模拟试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年湖南省长沙市芙蓉区第十六中学数学九上开学监测模拟试题【含答案】01
    2024-2025学年湖南省长沙市芙蓉区第十六中学数学九上开学监测模拟试题【含答案】02
    2024-2025学年湖南省长沙市芙蓉区第十六中学数学九上开学监测模拟试题【含答案】03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年湖南省长沙市芙蓉区第十六中学数学九上开学监测模拟试题【含答案】

    展开
    这是一份2024-2025学年湖南省长沙市芙蓉区第十六中学数学九上开学监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在中,,点是的中点,则下列结论不正确的是( )
    A.B.C.D.
    2、(4分)计算的结果是( )
    A.B.2C.1D.-5
    3、(4分)要比较两名同学共六次数学测试中谁的成绩比较稳定,应选用的统计量为( )
    A.中位数 B.方差 C.平均数 D.众数
    4、(4分)甲、乙两名运动员10次比赛成绩如表,S12,S22分别表示他们测试成绩的方差,则有( )
    A.S12>S22B.S12=S22C.S125、(4分)要使二次根式有意义,则x的取值范围是( )
    A.x<3B.x≤3C.x>3D.x≥3
    6、(4分)如图,在四边形ABCD中,AB=BC=2,且∠B=∠D=90°,连接AC,那么四边形ABCD的最大面积是( )
    A.2B.4C.4D.8
    7、(4分)下列各组线段a、b、c中不能组成直角三角形的是( )
    A.a=8,b=15,c=17B.a=7,b=24,c=25
    C.a=40,b=50,c=60D.a=,b=4,c=5
    8、(4分)在平行四边形ABCD中,AB=3,BC=4,当平行四边形ABCD的面积最大时,下结论正确的有( )
    ①AC=5 ②∠A+∠C=180° ③AC⊥BD ④AC=BD
    A.①②④B.①②③C.②③④D.①③④
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)函数的自变量x的取值范围______.
    10、(4分)内角和等于外角和2倍的多边形是__________边形.
    11、(4分)如图,双曲线y=(x>0)经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴.将△ABC沿AC翻折后得△AB′C,B′点落在OA上,则四边形OABC的面积是 .
    12、(4分)已知:一组邻边分别为和的平行四边形,和的平分线分别交所在直线于点,,则线段的长为________.
    13、(4分)图,矩形中,,,点是矩形的边上的一动点,以为边,在的右侧构造正方形,连接,则的最小值为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A(2,4),B(﹣4,m)两点.
    (1)求k1,k2,b的值;
    (2)求△AOB的面积;
    (3)请直接写出不等式≥k2x+b的解.
    15、(8分)某学习小组在学习了函数及函数图象的知识后,想利用此知识来探究周长一定的矩形其边长分别为多少时面积最大. 请将他们的探究过程补充完整.
    (1)列函数表达式:若矩形的周长为8,设矩形的一边长为x,面积为y,则有y=____________;
    (2)上述函数表达式中,自变量x的取值范围是____________;
    (3)列表:

    写出m=____________;
    (4)画图:在平面直角坐标系中已描出了上表中部分各对应值为坐标的点,请你画出该函数的图象;
    (5)结合图象可得,x=____________时,矩形的面积最大;写出该函数的其它性质(一条即可):____________.
    16、(8分)如图,在中,点是对角线的中点,点在上,且,连接并延长交于点F.过点作的垂线,垂足为,交于点.
    (1)求证:;
    (2)若.
    ①求证:;
    ②探索与的数量关系,并说明理由.
    17、(10分)天水市某中学为了解学校艺术社团活动的开展情况,在全校范围内随机抽取了部分学生,在“舞蹈、乐器、声乐、戏曲、其它活动”项目中,围绕你最喜欢哪一项活动(每人只限一项)进行了问卷调查,并将调查结果绘制成如下两幅不完整的统计图.
    请你根据统计图解答下列问题:
    (1)在这次调查中,一共抽查了 名学生.
    (2)请你补全条形统计图.
    (3)扇形统计图中喜欢“乐器”部分扇形的圆心角为 度.
    (4)请根据样本数据,估计该校1200名学生中喜欢“舞蹈”项目的共多少名学生?
    18、(10分)如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.
    (1)如图①,当时,求的值;
    (2)如图②当DE平分∠CDB时,求证:AF=OA;
    (3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=BG.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)不等式2x-1>x解集是_________.
    20、(4分)如图,是等腰直角三角形内一点,是斜边,将绕点按逆时针方向旋转到的位置.如果,那么的长是____.
    21、(4分)如图,在平行四边形 ABCD 中, AD  2 AB ;CF 平分 BCD 交 AD 于 F ,作 CE  AB , 垂足 E 在边 AB 上,连接 EF .则下列结论:① F 是 AD 的中点; ② S△EBC  2S△CEF;③ EF  CF ; ④ DFE  3AEF .其中一定成立的是_____.(把所有正确结论的序号都填在横线上)
    22、(4分)一次函数的图象与轴交于点________;与轴交于点______.
    23、(4分)若一次函数y=kx+b,当-3≤x≤1时,对应的y值满足1≤y≤9,则一次函数的解析式为____________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,将纸片沿AD折叠,直角边AC恰好落在斜边上,且与AE重合,求△BDE的面积.
    25、(10分)先化简,再求值:÷(a+),其中a=﹣1.
    26、(12分)小芳从家骑自行车去学校,所需时间()与骑车速度()之间的反比例函数关系如图.
    (1)小芳家与学校之间的距离是多少?
    (2)写出与的函数表达式;
    (3)若小芳点分从家出发,预计到校时间不超过点分,请你用函数的性质说明小芳的骑车速度至少为多少?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    首先根据三角形斜边中线定理得出AD=BD=CD,即可判定C选项正确; 又由∠A=∠ACD,∠CDB=∠A+∠ACD,即可判定A选项正确;由点是的中点,得出AD=BD,进而得出,又由,列出关系式,即可判定B选项正确;根据勾股定理,即可判定D选项错误.
    【详解】
    根据直角三角形斜边中线定理,得
    AD=BD=CD
    ∴,C选项正确;
    ∴∠A=∠ACD
    又∵∠CDB=∠A+∠ACD
    ∴,A选项正确;
    ∵点是的中点,
    ∴AD=BD

    又∵

    ∴,B选项正确;
    根据勾股定理,得
    ,D选项错误;
    故答案为D.
    此题主要考查直角三角形的性质,运用了斜边中线定理和勾股定理,熟练运用,即可解题.
    2、A
    【解析】
    根据二次根式的运算法则即可求出答案.
    【详解】
    解:原式=
    故选:A.
    本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
    3、B
    【解析】分析:方差是用来衡量一组数据波动大小的量,中位数、众数、平均数是反映一组数据的集中程度
    详解:由于方差反映数据的波动情况,所以要比较两名同学在四次数学测试中谁的成绩比较稳定,应选用的统计量是方差.
    故选B.
    点睛:本题考查了统计量的选取问题,熟练掌握各统计量的特征是解答本题的关键.中位数反映一组数据的中等水平,众数反映一组数据的多数水平,平均数反映一组数据的平均水平,方差反映一组数据的稳定程度,方差越大越不稳定,方差越小越稳定.
    4、A
    【解析】
    根据题意以及图表所示,先求出甲和乙成绩的平均数,然后运用方差公式即可做出选择.
    【详解】
    由表可知,甲的成绩平均数为,乙的成绩的平均数为,所以甲的成绩的方差为,乙的方差为,所以>.
    故本题选择A.
    本题主要考查方差公式的运用,根据图中数据,掌握方差公式即可求解.
    5、B
    【解析】
    分析:根据二次根式有意义的条件回答即可.
    详解:由有意义,可得3-x≥0,解得:x≤3.故选B.
    点睛:本题考查了二次根式有意义的条件,解题的关键是知道二次根式有意义,被开方数为非负数.
    6、B
    【解析】
    等腰直角三角形△ABC的面积一定,要使四边形ABCD的面积最大,只要△ACD面积最大即可,当点D在AC的中垂线上时,△ACD面积最大,此时ABCD是正方形,即可求出面积,做出选择即可.
    【详解】
    解:∵∠B=90°,AB=BC=2,
    ∵△ABC是等腰直角三角形,
    要使四边形ABCD的面积最大,只要△ACD面积最大即可,
    当点D在AC的中垂线上时,△ACD面积最大,
    此时ABCD是正方形,面积为2×2=4,
    故选:B.
    此题考查正方形的性质,直角三角形的性质,线段的中垂线的性质,何时面积最大是正确解题的关键.
    7、C
    【解析】
    这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.
    【详解】
    解:、因为,所以能组成直角三角形;
    、因为,所以能组成直角三角形;
    、因为,所以不能组成直角三角形;
    、因为,所以能组成直角三角形.
    故选:C.
    本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
    8、A
    【解析】
    当▱ABCD的面积最大时,四边形ABCD为矩形,得出∠A=∠B=∠C=∠D=90°,AC=BD,根据勾股定理求出AC,即可得出结论.
    【详解】
    根据题意得:当▱ABCD的面积最大时,四边形ABCD为矩形,
    ∴∠BAD=∠ABC=∠BCD=∠CDA=90°,AC=BD,
    ∴∠BAD+∠BCD=180° ,AC==5,
    ①正确,②正确,④正确;③不正确;
    故选A.
    本题考查了平行四边形的性质、矩形的性质以及勾股定理;得出▱ABCD的面积最大时,四边形ABCD为矩形是解决问题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、x<-2
    【解析】
    二次根式有意义的条件就是被开方数大于等于1;分式有意义的条件是分母不为1.
    【详解】
    根据题意得:-x-2>1,解得:x<﹣2.
    故答案为x<﹣2.
    函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为1;
    (3)当函数表达式是二次根式时,被开方数为非负数.
    10、六
    【解析】
    设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.
    【详解】
    解:设多边形有n条边,由题意得:
    180(n-2)=360×2,
    解得:n=6,
    故答案为:六.
    本题考查多边形的内角和和外角和,关键是掌握内角和为180°(n-2).
    11、1.
    【解析】
    延长BC,交x轴于点D,设点C(x,y),AB=a,由角平分线的性质得,CD=CB′,则△OCD≌△OCB′,再由翻折的性质得,BC=B′C,根据反比例函数的性质,可得出S△OCD=xy,则S△OCB′=xy,由AB∥x轴,得点A(x-a,1y),由题意得1y(x-a)=1,从而得出三角形ABC的面积等于ay,即可得出答案.
    【详解】
    延长BC,交x轴于点D,
    设点C(x,y),AB=a,
    ∵OC平分OA与x轴正半轴的夹角,
    ∴CD=CB′,△OCD≌△OCB′,
    再由翻折的性质得,BC=B′C,
    ∵双曲线 (x>0)经过四边形OABC的顶点A. C,
    ∴S△OCD=xy=1,
    ∴S△OCB′=xy=1,
    由翻折变换的性质和角平分线上的点到角的两边的距离相等可得BC=B′C=CD,
    ∴点A. B的纵坐标都是1y,
    ∵AB∥x轴,
    ∴点A(x−a,1y),
    ∴1y(x−a)=1,
    ∴xy−ay=1,
    ∵xy=1
    ∴ay=1,
    ∴S△ABC=ay=,
    ∴SOABC=S△OCB′+S△AB′C+S△ABC=1++=1.
    故答案为:1.
    12、或
    【解析】
    利用当AB=10cm,AD=6cm,由于平行四边形的两组对边互相平行,又AE平分∠BAD,由此可以推出所以∠BAE=∠DAE,则DE=AD=6cm;同理可得:CF=CB=6cm,而EF=CF+DE-DC,由此可以求出EF长;同理可得:当AD=10cm,AB=6cm时,可以求出EF长
    【详解】
    解:如图1,当AB=10cm,AD=6cm
    ∵AE平分∠BAD
    ∴∠BAE=∠DAE,
    又∵AD∥CB
    ∴∠EAB=∠DEA,
    ∴∠DAE=∠AED,则AD=DE=6cm
    同理可得:CF=CB=6cm
    ∵EF=DE+CF-DC=6+6-10=2(cm)
    如图2,当AD=10cm,AB=6cm,
    ∵AE平分∠BAD,
    ∴∠BAE=∠DAE
    又∵AD∥CB
    ∴∠EAB=∠DEA,
    ∴∠DAE=∠AED则AD=DE=10cm
    同理可得,CF=CB=10cm EF=DE+CF-DC=10+10-6=14(cm)
    故答案为:2或14.
    图1 图2
    本题主要考查了角平分线的定义、平行四边形的性质、平行线的性质等知识,关键是平行四边形的不同可能性进行分类讨论.
    13、
    【解析】
    过作,利用正方形的性质和全等三角形的判定得出,进而利用勾股定理解答即可.
    【详解】
    解:过作,
    正方形,
    ,,


    ,且,,

    ,,
    当时,的最小值为
    故答案为:
    本题考查正方形的性质,关键是利用正方形的性质和全等三角形的判定得出.
    三、解答题(本大题共5个小题,共48分)
    14、(1)k1=8,k1=1,b=1;(1)2;(3)x≤﹣4或0<x≤1.
    【解析】
    (1)由点A的坐标利用反比例函数图象上点的坐标特征,即可得出反比例函数解析式,再结合点B的横坐标即可得出点B的坐标,根据点A、B的坐标利用待定系数法,即可求出一次函数解析式;
    (1)根据一次函数图象上点的坐标特征,即可求出一次函数图象与y轴的交点坐标,再利用分割图形法即可求出△AOB的面积;
    (3)根据两函数图象的上下位置关系,即可得出不等式的解集.
    【详解】
    (1)∵反比例函数y=与一次函数y=k1x+b的图象交于点A(1,4),B(﹣4,m),
    ∴k1=1×4=8,m==﹣1,
    ∴点B的坐标为(﹣4,﹣1).
    将A(1,4)、B(﹣4,﹣1)代入y1=k1x+b中,,
    解得:,
    ∴k1=8,k1=1,b=1.
    (1)当x=0时,y1=x+1=1,
    ∴直线AB与y轴的交点坐标为(0,1),
    ∴S△AOB=×1×4+×1×1=2.
    (3)观察函数图象可知:
    不等式≥k1x+b的解集为x≤﹣4或0<x≤1.
    本题考查了反比例函数与一次函数的交点问题,解题的关键是:(1)根据待定系数法求出函数解析式;(1)利用分割图形法求出△AOB的面积;(3)根据两函数图象的上下位置关系找出不等式的解集.
    15、见解析
    【解析】
    (1)根据矩形的周长表示出另一边长,然后利用矩形面积公式即可求得y与x间的关系式;
    (2)根据矩形周长以及边长大于0即可求得;
    (3)把x=3.5代入(1)中的解析式即可求得m的值;
    (4)按从左到右的顺序用平滑的曲线进行画图即可;
    (5)观察图象即可得.
    【详解】
    (1)因为矩形一边长为x,则另一边长为(-x)=(4-x),
    依题意得:矩形的面积y=x(4-x),
    即y=-x2+4x,
    故答案为:-x2 + 4x;
    (2)由题意得,解得:0<x<4,
    故答案为:0<x<4;
    (3)当x=3.5时,y=-3.52+4×3.5=1.75,
    故答案为:1.75;
    (4)如图所示;
    (5)观察图象可知当x=2时矩形面积最大,
    轴对称图形;当0<x≤2时,y随x的增大而增大等,
    故答案为:2;轴对称图形或当0<x≤2时,y随x的增大而增大.
    本题考查了二次函数的应用,正确理解题意,得出函数解析式是解题的关键.注意数形结合思想的运用.
    16、(1)见解析;(2)①见解析,②,理由见解析.
    【解析】
    (1)根据平行四边形的性质得到∠OAF=∠OCE,证明△OAF≌△OCE,根据全等三角形的对应边相等证明结论;
    (2)①过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,根据三角形的外角性质得到∠BAG=∠BGA;
    ②证明△AME≌△BNG,根据全等三角形的性质得到ME=NG,根据等腰直角三角形的性质得到BE=GC,根据(1)中结论证明即可.
    【详解】
    (1)证明:∵四边形是平行四边形,
    ∴,,
    ∴,
    在和中,


    ∴,
    ∵,
    ∴;
    (2)①过作于,交于,过作于,
    则,
    ∵,
    ∴,
    ∵,
    ∴,,
    ∵,
    ∴,又,
    ∴,
    设,
    则,,
    ∴;
    ②,
    理由如下:∵,
    ∴,
    ∴,
    在和中,

    ∴,
    ∴,
    在等腰中,,
    ∴,
    ∴,
    ∵,
    ∴.
    本题主要考查了平行四边形的性质,全等三角形的判定与性质,等腰直角三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造全等三角形以及等腰直角三角形,利用全等三角形的对应边相等得出结论.
    17、 (1)50人;(2)见解析;(3)115.2;(4)1.
    【解析】
    (1)用喜欢声乐的人数除以它所占的百分比得到调查的总人数;
    (2)先计算出喜欢戏曲的人数,然后补全条形统计图;
    (3)用360度乘以喜欢乐器的人数所占得到百分比得到扇形统计图中喜欢“乐器”部分扇形的圆心角的度数;
    (4)用1200乘以样本中喜欢舞蹈的人数所占的百分比即可.
    【详解】
    (1),
    所以在这次调查中,一共抽查了50名学生;
    (2)喜欢戏曲的人数为(人),
    条形统计图为:
    (3)扇形统计图中喜欢“乐器”部分扇形的圆心角的度数为;
    故答案为50;115.2;
    (4),
    所以估计该校1200名学生中喜欢“舞蹈”项目的共1名学生.
    本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图.
    18、(1);(2)(3)见解析
    【解析】
    试题分析:(1)利用相似三角形的性质求得与的比值,依据和同高,则面积的比就是与的比值,据此即可求解;
    (2)利用三角形的外角和定理证得 可以证得,在直角中,利用勾股定理可以证得;
    (3)连接 易证是的中位线,然后根据是等腰直角三角形,易证 利用相似三角形的对应边的比相等即可.
    试题解析:(1)∵,∴
    ∵四边形ABCD是正方形,

    ∴△CEF∽△ADF,∴,∴,∴;
    (2)证明:∵DE平分∠CDB,
    ∴∠ODF=∠CDF,
    ∵AC、BD是正方形ABCD的对角线.

    而∠ADF=∠ADO+∠ODF,∠AFD=∠FCD+∠CDF,
    ∴∠ADF=∠AFD,
    ∴AD=AF,
    在中,根据勾股定理得:
    AD==OA,

    (3)证明:连接OE.
    ∵点O是正方形ABCD的对角线AC、BD的交点,
    点O是BD的中点.
    又∵点E是BC的中点,
    ∴OE是△BCD的中位线,


    ∴=,∴.


    .在 中,∵∠GCF=45°.∴CG=GF,
    又∵CD=BC,∴,
    ∴=.
    ∴CG=BG.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、x>1
    【解析】
    将不等式未知项移项到不等式左边,常数项移项到方程右边,合并后将x的系数化为1,即可求出原不等式的解集.
    【详解】
    解:2x-1>x,
    移项得:2x-x>1,
    合并得:x>1,
    则原不等式的解集为x>1.
    故答案为:x>1
    此题考查了一元一次不等式的解法,解一元一次不等式的步骤为:去分母,去括号,移项,合并同类项,将x的系数化为1求出解集.
    20、
    【解析】
    证明△ADD′是等腰直角三角形即可解决问题.
    【详解】
    解:由旋转可知:△ABD≌△ACD′,
    ∴∠BAD=∠CAD′,AD=AD′=2,
    ∴∠BAC=∠DAD′=90°,即△ADD′是等腰直角三角形,
    ∴DD′=,
    故答案为:.
    本题考查旋转的性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    21、①③④.
    【解析】
    由角平分线的定义和平行四边形的性质可证得CD=DF,进一步可证得F为AD的中点,由此可判断①;延长EF,交CD延长线于M,分别利用平行四边形的性质以及①的结论可得△AEF≌△DMF,结合直角三角形的性质可判断③;结合EF=FM,利用三角形的面积公式可判断②;在△DCF和△ECF中利用等腰三角形的性质、外角的性质及三角形内角和可得出∠DFE=3∠AEF,可判断④,综上可得答案.
    【详解】
    解:∵四边形ABCD为平行四边形,∴AD∥BC,
    ∴∠DFC=∠BCF,
    ∵CF平分∠BCD,∴∠BCF=∠DCF,
    ∴∠DFC=∠DCF,∴CD=DF,
    ∵AD=2AB, ∴AD=2CD,
    ∴AF=FD=CD,即F为AD的中点,故①正确;
    延长EF,交CD延长线于M,如图,

    ∵四边形ABCD是平行四边形, ∴AB∥CD,
    ∴∠A=∠MDF,
    ∵F为AD中点,∴AF=FD,
    又∵∠AFE=∠DFM,
    ∴△AEF≌△DMF(ASA),
    ∴FE=MF,∠AEF=∠M,
    ∵CE⊥AB,∴∠AEC=90°,
    ∴∠ECD=∠AEC=90°,
    ∵FM=EF,∴FC=FM,故③正确;
    ∵FM=EF,∴,
    ∵MC>BE,
    ∴<2,故②不正确;
    设∠FEC=x,则∠FCE=x,
    ∴∠DCF=∠DFC=90°-x,
    ∴∠EFC=180°-2x,
    ∴∠EFD=90°-x+180°-2x=270°-3x ,
    ∵∠AEF=90°-x,
    ∴∠DFE=3∠AEF,故④正确;
    综上可知正确的结论为①③④.
    故答案为①③④.
    本题以平行四边形为载体,综合考查了平行四边形的性质、全等三角形的判定和性质、直角三角形的斜边上的中线等于斜边一半的性质、三角形的内角和和等腰三角形的判定和性质,思维量大,综合性强. 解题的关键是正确作出辅助线,综合运用所学知识去分析思考;本题中见中点,延长证全等的思路是添辅助线的常用方法,值得借鉴与学习.
    22、
    【解析】
    分别令x,y为0,即可得出答案.
    【详解】
    解:∵当时,;当时,
    ∴一次函数的图象与轴交于点,与轴交于点.
    故答案为:;.
    本题考查的知识点是一次函数与坐标轴的交点坐标,比较简单基础.
    23、y=2x+7或y=-2x+1
    【解析】
    解:分两种情况讨论:
    (1)当k>0时, ,解得:,此时y=2x+7;
    (2)当k<0时, ,解得:,此时y=-2x+1.
    综上所述:所求的函数解析式为:y=2x+7或y=-2x+1.
    点睛:本题主要考查待定系数法求一次函数的解析式的知识,解答本题的关键是熟练掌握一次函数的性质:在定义域上是单调函数,本题难度不大.
    二、解答题(本大题共3个小题,共30分)
    24、6
    【解析】
    由勾股定理可求AB的长,由折叠的性质可得AC=AE=6cm,∠DEB=90°,由勾股定理可求DE的长,由三角形的面积公式可求解.
    【详解】
    解:∵AC=6cm,BC=8cm,
    ∴,
    ∵将纸片沿AD折叠,直角边AC恰好落在斜边上,且与AE重合,
    ∴AC=AE=6cm,∠DEB=90°
    ∴BE=10-6=4cm
    设CD=DE=x,
    则在Rt△DEB中,

    解得:,
    即DE=3.
    ∴△BDE的面积为:.
    本题考查了翻折变换,勾股定理,三角形面积公式,熟练掌握折叠的性质是本题的关键.
    25、,
    【解析】
    先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算.
    【详解】
    解:
    将代入上式有
    原式=.
    故答案为:;.
    本题主要考查了分式的化简求值和二次根式的运算,其中熟练掌握分式混合运算法则是解题的关键.
    26、 (1)1400;(2);(3)小芳的骑车速度至少为.
    【解析】
    (1)直接利用反比例函数图象上点的坐标得出小芳家与学校之间的距离;
    (2)利用待定系数法求出反比例函数解析式;
    (3)利用y=8进而得出骑车的速度.
    【详解】
    (1)小芳家与学校之间的距离是:();
    (2)设,当时,,
    解得:,
    故与的函数表达式为:;
    (3)当时,,
    ,在第一象限内随的增大而减小,
    小芳的骑车速度至少为.
    此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.
    题号





    总分
    得分
    批阅人
    8分
    9分
    10分
    甲(频数)
    4
    2
    4
    乙(频数)
    3
    4
    3
    x

    0.5
    1
    1.5
    2
    2.5
    3
    3.5

    y

    1.75
    3
    3.75
    4
    3.75
    3
    m

    相关试卷

    2024-2025学年湖南省湘潭市名校九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年湖南省湘潭市名校九上数学开学学业质量监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年湖南省涟源市六亩塘中学数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年湖南省涟源市六亩塘中学数学九上开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年湖南省凤凰皇仓中学数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年湖南省凤凰皇仓中学数学九上开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map